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Preface

While working on our common problems, we often used our meetings to dis-
cuss also the fundamentals of physics and the implications of new results in
mathematics for theoretical physics. Out of these discussions grew the work
presented in this monograph. It is an attempt at answering the following ques-
tion: What mathematical structures does Einstein–Weyl causality impose on a
point-set M that has no other structure defined on it? In order to address this
question, we have, first of all, to define what precisely we mean by Einstein-
Weyl causality – that is, to provide an axiomatization of this notion. It may be
remarked that we were led to the axiomatization given in Chap. 3 by physical
intuition, and not by mathematical analogy.

Next, we show that our axiomatization defines a topology on the point-set
M , and that the topological space M is uniformizable. We then show that, if
the topology of M is first-countable and its uniformity is totally bounded, then
the order completion of the uniformity1 has a local differentiable structure.
Examples show that the conditions of first countability and total boundedness
are sufficient, but not necessary. However, the methods we have developed so
far are not applicable to more general situations. Roughly speaking, we can
summarize our results as follows: Subject to the above caveat, spaces satisfy-
ing Einstein–Weyl causality are densely embedded in spaces that have locally
but not necessarily globally the structure of differentiable manifolds. Physi-
cal intuition can give no more, since a finite number of measurements cannot
distinguish between infinitely-differentiable and (continuous but) nowhere-
differentiable structures.

Motivations for axiomatizing a physical theory may vary. Carathéodory
“axiomatized” classical thermodynamics in order to understand temperature
and entropy in terms of integrating factors of Pfaffian forms. Wightman’s
axiomatization of relativistic quantum field theory was a response to the
situation that a mathematically inconsistent theory gave results in perfect

1 Order completion is slightly different from uniform completion; however, the dif-
ference may be disregarded at this stage.
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agreement with experiment. Closer to our own endeavours, the Soviet school,
following A. D. Alexandrov, has axiomatized relativity theory (see [44, 45]) in
the spirit of Hilbert’s sixth problem, and Schutz has developed “Minkowski
space-time from a set of independent axioms stated in terms of a single rela-
tion of intermediacy or betweenness” [95].

The fundamental difference between these axiomatizations inspired by the
theory of relativity and our work appears to be the following. In the works
cited, a definite physical-mathematical structure is taken as “given”; in one
case it is relativity theory, in the other Minkowski space. The aim in each case
is to axiomatize a given mathematical structure in its entirety. By contrast,
we seek to isolate a fragment (which we call Einstein-Weyl causality) from the
totality of structures called relativity theory, attempt a precise definition of
this fragment only, and investigate what further mathematical structures it
forces on the underlying point-set. The difference is strikingly illustrated by
the fact that Einstein-Weyl causality can be defined on discontinuua such as
Q2. The relationship with the differentiable structure of space-time is more
subtle; naively speaking, we are trying to unearth mathematical consequences
of a physical principle. The question we investigate is not inspired by Hilbert’s
sixth problem, but rather by Alexandrov’s observation [1] that the interiors
of double cones provide a base for the usual topology of Minkowski space, by
Zeeman’s work that “Causality implies the Lorentz group” [132], by Cantor’s
assertion that “the very essence of mathematics is its freedom” (see [38],
pp. 3–4), and by Wigner’s consequent query that if mathematics is the free
creation of the human mind, then how does one explain “The unreasonable
effectiveness of mathematics in the natural sciences” [128]?

The mathematical level required of the reader is that of the graduate
student pursuing a problem in mathematical physics. For the physicist who is
interested in applications, perhaps the most significant result of the present
work is that the notion of causality can effectively be extended to discontinuua.

The few references to physics may be disregarded by mathematicians with-
out loss of continuity. Sections 8.2.1, 11.2 and the unsolved problem discussed
in Chap. 9 may be of particular interest to them. The extension of our results
to infinite-dimensional spaces remains a major problem.

Every chapter begins with a paragraph or a section that motivates the
chapter and gives an indication of the results sought and established. Appen-
dix A gives a fairly detailed summary of the basic theory of uniformities and
uniformization. Appendix B gives the definitions and results on fibre bundles
and G-structures that are needed in the text. Appendix C brings together the
axioms and the special assumptions. A List of Symbols is provided. The Index
is mainly an index of terms; it is not comprehensive.

Göttingen Hans-Jürgen Borchers
Pardes Hanna Rathindra Nath Sen
May 2006
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1

Introduction

In every textbook on the theory of relativity it is assumed, without any dis-
cussion, that space-time is a differentiable manifold, possibly with singulari-
ties. Between a point-set and a differentiable manifold there is an enormous
gap, and we felt that physics itself could contribute to narrowing this gap.
In experimental physics, one can make only a finite number of well-separated
measurements, and therefore it is natural to start with a discrete set of points
as a candidate for space-time. As one cannot put an upper bound on the
number of measurements, this set cannot be finite; it must, at least, be count-
able. Next, as one cannot place a quantitative limit on experimental accuracy,
one has to admit the “density” property that between any two points on a
scale lies a third. Finally, one has to ask how one arrives at the continuum. In
short, we felt that it should be possible to start from point-sets and find con-
ditions (axioms) – motivated by physics – which would allow us to construct
a topological manifold from the point-set. If this turned out to be true, one
could become more ambitious and look for conditions which would imply the
differentiability of the manifold.

The problem with such a project is that while the goal is clear enough, the
starting point is rather less so. Since we had something like the background
for relativity theory in mind, the goal had to be an ordered manifold where
the order is causal and is defined by local cones.1 It would have been too much
to expect that one could begin with the definition of these local cones, since
a cone is, in some sense, a complex higher-dimensional object which should
be constructed from simpler objects. The simplest ordered sets are those that
are totally ordered. From the experience of Minkowski space, one knows that
a causal order determines two classes of totally ordered subsets, namely the
paths of light rays and those of freely-falling particles. These subsets have the
density property that between any two distinct members of one lies a third.
A good example of such a set is provided by Q, the set of rational numbers.

1 Local cones are the intersections of cones with the neighbourhoods of their ver-
tices.
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2 1 Introduction

One class of such objects is defined in Chap. 3; the objects are called light
rays, short for space-time paths of light rays, which is what they would be in
Minkowski space. It is possible to define light cones in terms of light rays, but
one has to introduce additional conditions to ensure that the cones so defined
be proper cones. The global behaviour of such cones can be rather strange.
Only the properties of local cones can be specified in advance. The local
cones should be convex and their boundaries should consist only of light rays
passing through the vertex (no higher dimensional faces, such as one finds in
pyramids, are allowed). That the cones should be “well-behaved” only locally
reflects the idea that gravitational lensing, which is a global effect, should be
permitted.

Forward and backward cones lead trivially to the definition of double cones
(order intervals).2 The collection of double cones that are are “small enough”
and have the desired “nice properties” can be used to define a topology. The
definition of the nice properties and the construction of the topology is given
in Chap. 4. It turns out that the nice properties defined for the small double
cones are nice enough to ensure that the topology is not only Hausdorff, but
also allows the definition of sufficiently many continuous real-valued functions.
The order intervals with the nice properties that will be used in this text will
be called D-intervals.

From double cones one can construct quadrilaterals bounded by four light
rays. Moreover, if the double cones are D-intervals, then by using only light
rays one can construct natural, order-preserving homeomorphisms between
the opposite sides of light ray quadrilaterals. Using these homeomorphisms
one can derive certain homogeneity properties of the entire space, which go a
long way towards showing that the space looks everywhere the same. These
results are established in Chap. 5. However, to do so one has to carry small D-
intervals along light rays, which is only possible if light rays have overlapping
coverings by the basic sets of the topology. This is an additional requirement
that has to be imposed.

Nothing so far excludes the possibility that the space we are considering
is totally disconnected (like Q2); we have to ask whether or not our space can
be completed. Fortunately the topology defined in Chap. 4 is nice enough to
make this possible. In order that a completion be possible it is necessary for
the space to carry either a metric or a uniform structure. A metric structure is
too restrictive for our purposes, but our spaces do carry the relevant uniform
structure. This concept is explained, and the result extablished, in Chap. 6.
Having completed the space, one has to extend the order to the completed
space. This is also done in Chap. 6.

Chapter 7 is in the nature of an aside, and discusses some properties
of spaces in which light rays are complete. An example shows that there
are infinite-dimensional spaces in which light rays are complete, but the

2 A double cone is the intersection of a forward and a backward (light) cone.
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space itself is not. However, no finite-dimensional space with this property is
known.

The threads are pulled together in Chap. 8, in which several major topics
are covered. The first is the construction of timelike curves, which allows
one to introduce coordinates in D-intervals. With these one completes the
proof that the space does indeed look everywhere the same, and answers key
homotopy questions. The final result in this direction shows that the interior
of a D-interval in a finite dimensional space is homeomorphic with Rn for
some n, and therefore has a differentiable structure. This is followed by a
discussion of the possible global differential structure; here the assumption of
isotropy plays an essential role. The fact that such an additional assumption is
necessary for the differentiable structure to be global suggests that the exotic
differentiable structures on R4 may be of limited physical interest.3 The last
topic of this chapter is the construction of covering spaces if the original one
is not simply connected. The main point of this extension is to show that the
order structure can be extended to the covering space. The converse, namely
that the restriction of an ordered covering space is also ordered, need not be
true.

The timelike curves we constructed in Chap. 8 were coordinate dependent.
Try as we might, we could not construct natural ones, owing to a peculiar
problem that arises in ordered spaces. This is the cushion problem, which
is discussed in Chap. 9. Chapter 10 discusses two works that may be said
to “bracket” ours, and calls attention to some that are less closely related.
Chapter 11, Concluding Remarks, discusses some physical, mathematical and
philosophical questions arising from or related to our work.

Our enterprise ends by introducing a conformal structure. A suggestion for
going further and defining the Weyl projective structure is given at the end
of Sect. 11.1. This could be the starting-point for defining the Riemannian
structure, following the work [32] of Ehlers, Pirani and Schild.

The above is a brief outline of the programme of this monograph, which
describes several layers of mathematical structure that follow from a funda-
mental physical principle. Most of these mathematical structures and their
interrelations were first analysed by Weyl [116], and a brief account of these
structures is given in Chap. 2. The notion of causality is discussed in Sect. 1.1,
and the key role of Alexandrov’s observation is explained in Sect. 1.2. This
Introduction ends with some remarks on space-time at the Planck scale.

3 For more information on exotic R4’s, we refer the reader to the very readable
article by Freedman [40]. A more technical account may be found in Gompf [42].
The books by Lawson [69], Bourguignon and Lawson [13] and Atiyah [3] cover
the application of Yang-Mills theory to geometry and topology in greater detail.
Donaldson’s original article is [25]. We shall not discuss these questions in this
monograph.
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1.1 Causality as a Physical Principle

The term causality has been used in 20th-century physics in two senses; a
general sense indistinguishable from determinism in pre-relativity physics, and
a more specific one that began to take shape in the nineteen-twenties (and
will be explained below). An example of the first of these may be found in
Weyl’s book ([115], p. 207):

“. . . we have ten “principal equations” before us, in which the deriv-
atives of the ten phase-quantities with respect to the time are ex-
pressed in relation to themselves and their spatial derivatives; that is,
we have physical laws in the form that is demanded by the principle
of causality” [emphasis in the original].

Weyl apparently meant to distinguish between causal or deterministic and
non-deterministic time evolution. If one assumes that there is no effect without
a cause,4 a non-deterministic evolution can only mean an evolution subject
to external influences that defy precise accounting.

In the 19th century the relation between cause and effect acquired a new
twist owing to the emergence of Cauchy’s (initial-value) problem for hy-
perbolic differential equations. This problem arose quite naturally in Lord
Rayleigh’s Theory of Sound [105] and Maxwell’s electrodynamics [76]. It
turned out that the solution of the initial-value problem for a later time de-
pended only upon a finite part of the initial surface [47]. The special theory of
relativity gave a quantitative turn to the notion that causes preceded effects:
the speed of light set a limiting velocity for the transmission of a signal. Using
this fact (together with the “conservation of probability”), Kramers [65] and
de Kronig [67] showed (in 1926–27) that, in the scattering of light by atoms,
the forward scattering amplitude at any frequency is related to an integral,
over all frequencies, of the total absorption cross-section (see, for example,
[8]). This relation is now known as the Kramers-Kronig relation. It was the
starting-point of the theory of dispersion relations, and introduced the term
causality conditions into the lexicon of physics. Since the 1940’s, a further ter-
minological refinement seems to have taken place. The fact that no physical
signal can propagate faster than the speed of light has been called macro-
causality. Its major consequence in quantum theory – that observations at
spacelike separations cannot influence each other – is called microcausality. In
relativistic quantum field theory5 the preferred term is local commutativity ;
Fermi fields anticommute rather than commute at spacelike separations. All
of these terms describe what are, essentially, physical principles.
4 This was a metaphysical belief of the enlightenment. As we are concerned only

with scientific questions and not with philosophical ones, we do not have to contest
this assumption. A nice discussion of the relation between inferring causes from
effects and vice versa is given in Jordan [56].

5 The central role of causality in quantum field theory is fully brought out in the
book by R. Haag [46].
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As suggested earlier, the terms causality and determinism are no longer
synonymous in physics, with the former having clear mathematical overtones.
In current usage, a causal system often (but not always) means one of the
hyperbolic type, the paradigm for which is the wave equation (which describes,
inter alia, the propagation of sound and electromagnetic waves). A causal
system is certainly deterministic; however, there exist deterministic systems,
such as those governed by the equation of heat conduction (or diffusion),
that are not of the hyperbolic type, and therefore not “causal” in the sense
described above.

Our use of the terms causal and causality will conform to the restricted
sense of the last paragraph.

1.2 Causal Structures as Primary Objects

In physics, it is taken for granted that space-time is a differentiable manifold,
except for speculative works on discrete space-times (the 1967 work of Kron-
heimer and Penrose [66], which we shall discuss later, is a notable exception).
As stated earlier, the question we wanted to address was, roughly speaking,
the following: Is it possible to trace the topological and differential structures
of space-time to something that could be interpreted as a physical principle?
The hint came from the following:

It had been observed by A. D. Alexandrov [1] in 1959 that the interiors
of double cones in Minkowski space provide a base for its (standard) topo-
logy. Double cones can also be defined in Newtonian space-time. In Newtonian
physics, there is no upper limit to the speed of propagation of a signal; that is,
one may assume the velocity of light to be infinite. A “light cone” in Newtonian
physics is therefore a 3-dimensional hyperplane t = const = a which separates
the future part of space-time, t > a, from the past part t < a. A double cone
is a slice a ≤ t ≤ b. The interiors of these slices also form the basis for a
topology on space-time, R4. However, this topology is not the standard one;
it is not even Hausdorff (see Fig. 1.1).

.............................................................................................................................................................................................................................................................................................
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Fig. 1.1. Double cones in two-dimensional space-time
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In this connection one should also mention the work of Zeeman [132], who
showed, without any assumption of continuity, that the group of automor-
phisms of Minkowski space that preserve the causal order is the inhomoge-
neous Lorentz group plus the dilations.6

1.3 Space-time at the Planck Scale

We end this Introduction with a remark concerning space-time at the Planck
scale (ca. 10−33 cm).

Most authors believe that the quantization of general relativity will present
new difficulties at the Planck scale. Due to Heisenberg’s uncertainty rela-
tions, distances smaller than the Planck length will probably make no physical
sense. It has been suggested that discretization would be a way out. Our ap-
proach shows that discretization is consistent with causality, but it is doubtful
whether it offers a solution to the problem. Unless one is able to fix a fun-
damental length, discretization will have to be random or fuzzy, ideas that
have not found much favour. Some authors have suggested the alternative of a
quantized space-time, i.e., one in which the coordinates do not commute. The
classical, i.e., commuting coordinates should then appear as a limit, rather
like classical physics being a limit of quantum mechanics. What happens with
causality at this scale is not known. As usual physics is likely to break down
in black holes, quantization of general relativity may be very different from
the standard quantization of fields.

6 The “fine topology” that he later developed for Minkowski space in [133] does not
appear to have been investigated further.
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Geometrical Structures on Space-Time

The chief aim of this chapter is to define the geometrical structures, global
and local, that are associated with the notion of causality. The work described
later in this volume is the exploration of an abstraction from this notion. We
shall begin with a review of the relevant global geometrical structures on Rn,
and then proceed to the local structures. We shall follow Hermann Weyl’s
approach [115], modified as necessary to incorporate later developments, in
the discussion of geometrical structures. A few terms used by Weyl and still
in use have changed meanings, and we shall point these out. Most of this
material will be familiar to geometers and relativity theorists, but perhaps
less so to others.

In the following, we shall also explain why we have chosen the title Mathe-
matical Implications of Einstein-Weyl Causality for this volume; that expla-
nation will simultaneously provide the setting for our endeavour. As the term
“Einstein–Weyl Causality” is meant also as a tribute to Weyl,1 we shall give
a few quotations to convey an idea of Weyl’s thinking on the subject.

2.1 Global Structures on Rn

We begin with the most basic definitions.

By Rn we shall understand the Cartesian product of n copies of R, usually
with the product topology. The following geometrical structures are defined
globally on Rn:

1. The Affine Structure: On p. 12 of Space–Time–Matter [115], Hermann
Weyl wrote: “My real object. . . will be to single out translations among
possible congruent transformations. Starting from the conception of trans-
lation I shall then develop Euclidean geometry along strictly axiomatic

1 In defining the conformal structure (see Sect. 2.2.3), Weyl provided a framework
for the study of causality independently of the notion of length.

H.-J. Borchers and R.N. Sen: Mathematical Implications of Einstein–Weyl Causality,
Lect. Notes Phys. 709, 7–14 (2006)
DOI 10.1007/3-540-37681-X 2 c© Springer-Verlag Berlin Heidelberg 2006
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lines.” Weyl defined the terms affine and linear to be synonymous ([115],
end of p. 21). However, this is no longer so in current usage. In current
usage, linear transformations are homogeneous, and the group of linear
transformations of Rn is the group GL(n, R). The group of affine trans-
formations of Rn is a semidirect product of Tn, the group of translations
of Rn, and the group GL(n, R). In the physics literature, this group is
sometimes called the inhomogeneous general linear group, and denoted by
IGL(n, R). We shall use the term “linear” in its current mathematical
sense. The term “affine” will be synonymous with “inhomogeneous lin-
ear”. The strictly inhomogeneous part of an affine transformation will be
called a “translation”. The term affine connection, still in use, owes its
origin to the link between the term “affine” and the translations of Rn.

2. The Euclidean Structure: This is defined by the Euclidean metric

d(x, y) = {(x1 − y1)2 + · · · + (xn − yn)2}1/2 , (2.1)

where x = (x1, . . . , xn), y = (y1, . . . , yn) are points of Rn. This metric
defines a topology which is equivalent to the product topology that we have
assumed, and defines an inner product via the law of cosines of trigono-
metry. The group which preserves this inner product structure is known as
the orthogonal group, and is denoted by O(n). It is the maximal compact
subgroup of GL(n, R). The inhomogeneous orthogonal group is known as
the Euclidean group.

3. The Minkowski Structure: This is defined by the indefinite Minkowski
form (called the Minkowski metric in physics)

s(x, y) = {(x0 − y0)2 − (x1 − y1)2 − · · · − (xn−1 − yn−1)2}1/2 . (2.2)

We have chosen the signature + − · · ·− because, in field theories2 on
Minkowski space, positivity of the energy is an important consideration.
In the literature on general relativity, the opposite signature, + · · ·+−, is
frequently used, but there is no unanimity on this question. This choice
induces a positive metric on spacelike hypersurfaces in (special and) gene-
ral relativity. Historically, at the beginning of the theory of relativity one
often introduced the imaginary variable xn = ix0, in order to make the
Minkowski form look like the Euclidean metric x2

1 + x2
2 + · · · + x2

n, which
too led to the Minkowski signature + · · ·+−. Lorentz transformations are
linear transformations of Rn that leave the Minkowski form invariant. The
group of Lorentz transformations, called the Lorentz group, is denoted by
O(1, n− 1), or more often by L. The inhomogeneous Lorentz group is also
known as the Poincaré group.

2 In this monograph the term field theory will only mean a classical or quantum
field theory in physics. We shall have no occasion to refer to the theory of fields
which is a branch of mathematics.
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2.2 Local Structures on Manifolds

The manifestly geometrical character of the general theory of relativity led to
attempts at geometrizing the classical theory of the electromagnetic field, and
at finding unified field theories; new questions were asked about the nature of
space. Weyl was one of the first to realize that “space” was an interweaving
of distinct mathematical structures and that these structures merited inde-
pendent mathematical study. This study was central to his attempts at the
geometrization of physics, which gave rise to the concept of gauge invariance
that – albeit in a different form – was to become one of the dominant principles
of physics in the second half of the 20th Century.

Weyl’s interests were wide. In the preface to the first edition of Raum–
Zeit–Materie, he wrote (quoted from [115]):

Although. . . a series of introductions into the general theory of relati-
vity has appeared, nevertheless a systematic presentation was lacking.
I therefore considered to publish the following lectures which I gave
in the Summer Term of 1917 at the Eidgen. Technische Hochschule in
Zürich. At the same time it was my wish to present this great subject
as an illustration of the intermingling of philosophical, mathematical,
and physical thought, a study which is dear to my heart.

The reader who wishes to pursue this “intermingling of philosophical, mathe-
matical and physical thought” could do no better than start with the recent
volume “Hermann Weyl’s Raum–Zeit–Materie and a General Introduction to
his Scientific Work” [93], and proceed to Weyl himself (particularly [120]; see
the last Section of this Introduction). We shall content ourselves with a brief
account of the mathematical aspect of the subject from the current viewpoint;
this may also facilitate the reading of the original sources.

2.2.1 Remark on Terminology

The initial development of Riemannian geometry was confined to Riemannian
metrics ds2 = gijdxidxj (we assume the Einstein summation convention) that
were positive-definite. However, after the advent of the general theory of rela-
tivity it was realized that many of the key concepts remained meaningful, and
the results valid (perhaps in a modified form), even without this restriction.
Indeed, the restriction to positive-definite Riemannian metrics was not made
in Eisenhart’s book Riemannian Geometry ([35]; see the Preface). It follows
that (in developing Riemannian geometry through the tensor calculus) it is
not really necessary to distinguish, terminologically, between Riemannian and
pseudo-Riemannian metrics. However, the theorem that a finite-dimensional
differentiable manifold3 always admits a Riemannian metric holds only if
3 Henceforth the term ‘differentiable manifold’ will mean a finite-dimensional mani-

fold, unless stated otherwise; infinite-dimensionality will always be made explicit.
See also Sect. 2.2.2, and footnote 3 on p. 172.
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the Riemannian metric is understood to be positive-definite (see below), and
therefore we shall stay with this terminological distinction.

2.2.2 Differentiable Manifolds and Geometry

If (as is generally the case) one assumes that space-time has a differentiable
structure, the appropriate mathematical tools for its study would be differen-
tial geometry for local problems and differential topology for global problems.
Both start by making precise the notion of a differentiable manifold.

We recall some notations and terminology. A topological space which is
locally homeomorphic to Rn for some n is called an n-dimensional topological
manifold, or a C(0)-manifold. A C(k)-differentiable manifold, k = 1, 2, . . . is
one that carries a k-fold differentiable structure. A C(∞)-manifold is also called
a smooth manifold. We remind the reader of the following facts:

1. There exist topological manifolds that admit of no differentiable structure
[58].

2. Every C(k)-structure on a manifold (k > 0) admits a compatible C(∞)-
structure (see, for example, [50]). For most practical purposes, therefore,
it may be assumed that a differentiable manifold is smooth.4

3. Every differentiable manifold admits a (positive-definite) Riemannian met-
ric (see Appendix B, or [75]).

As a consequence of the second, there is no real loss of generality, in the
differential category, in restricting attention to smooth manifolds. As a matter
of historical interest we remark that the definition of a differentiable manifold
by means of overlapping coordinate patches was first given by Weyl in 1912
in his book Die Idee der Riemannschen Fläche [112]. However, the subject
became established as an independent discipline only much later, after the
papers of Whitney, the first of which [123] appeared in 1936.

The tabula rasa of today’s geometer is the differentiable manifold; like the
vacuum state of today’s physicist, it already carries a lot of information.

We shall now describe two further geometrical structures that were intro-
duced by Weyl; these structures are local :

2.2.3 The Conformal Structure

The local version of the Minkowski structure is called a Lorentz structure,
and is most often expressed in the physics literature as a family of (local)
coordinate transformations that leave the pseudo-Riemannian metric (called
simply the metric in general relativity)

ds2 = gμν(x)dxμdxν (2.3)

4 The differentiable structures in this monograph will always be assumed smooth.
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invariant at each x. Passing to the tangent bundle5 T (M), one finds that they
define a family of coordinate transformations on M with values in O(1, n−1),
the Lorentz group. In his attempt to unify general relativity and electrody-
namics, Weyl [113] was led to consider a more general class of transformations
that do not leave ds2 invariant but rather multiply it by a local scaling factor,
a “gauge”:

ds2 → Ω(x) ds2 = Ω(x) gμνdxμdxν , (2.4)

where Ω(x) is some smooth function of x. These transformations were called
conformal by Weyl, because they preserved angles (see [35]). Additionally,
while they did not leave ds2 invariant, they clearly left the surfaces ds2 = 0
invariant, i.e., they mapped light cones to light cones. Conformal transforma-
tions on a 4-dimensional Minkowski space form a 15-parameter group called
the conformal group,6 which is the Lorentz group extended by dilatations and
the transformations of reciprocal radii xi to xi/x2.7

It follows that conformal transformations on “flat” Minkowski space that
do not leave ds2 �= 0 invariant have to be nonlinear. If the dimension of the
Minkowski space is greater than 2, then there exist conformal transformations
that send timelike differences to spacelike ones. This cannot happen in two
dimensions, which is why conformal field theories are mostly studied on two-
dimensional Minkowski space.

It was shown by Weyl that conformal transformations left the tensor

Cλ
μνσ = Rλ

μνσ +
1

n − 2
(
δλ
ν Rμσ − δλ

σRμν + gμσRλ
μ − gμνRλ

σ

)
+

R

(n − 1)(n − 2)
(
δλ
σgμν − δλ

ν gμσ

) (2.5)

invariant. In the above, Rλ
μνσ is the Riemann tensor, Rμσ is the Ricci tensor,

and R is the scalar curvature. The tensor Cλ
μνσ is known by various names:

Weyl himself called it the conformal curvature tensor [35]. Current usage seems
to favour the terms Weyl tensor [32] or the conformal tensor [110].

2.2.4 The Weyl Projective Structure

The notion of geodesics is defined on Riemannian and pseudo-Riemannian
manifolds. By analogy with affine transformations on flat spaces, the study of
transformations that map geodesics to geodesics is clearly of interest. These
transformations were studied by Weyl, who showed that they are characterized
by the fact that they leave the following tensor invariant:
5 See Appendix B for the definitions of fibre bundles and G-structures.
6 In the mathematical literature, the conformal group is generally defined on Rie-

mannian manifolds of arbitrary dimension. See the Remark B.2.3, Appendix B.
7 In quantum field theory, this map is usually taken with a minus sign: zi → −zi/z

2,
so that the complex forward tube is mapped into itself. See [126].
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Wλ
μνσ = Rλ

μνσ +
1

n − 1
(δλ

ν Rμσ − δλ
kRμν) . (2.6)

He called the tensor (2.6) the projective curvature tensor [35], and the struc-
ture associated with it the projective structure. Note that, in a pseudo-
Riemannian manifold, a projective structure does not necessarily map null
geodesics to null geodesics, or light cones to light cones.8

In general relativity, timelike geodesics correspond to paths of freely falling
particles of nonzero rest mass. Ehlers, Pirani and Schild [32] have studied
the local structure of a manifold in which conformal and (Weyl) projective
structures are defined locally.

2.3 Nature of the Present Work

In developing his “infinitesimal geometry” Weyl, like Felix Klein before him,
shifted attention from the geometrical object itself to a family of transfor-
mations of the object. In Klein’s case,9 the transformations formed a group;
in Weyl’s case, they formed a Lie algebra10 which left his conformal (or pro-
jective, as the case may be) curvature tensor invariant. The transformation
group did not define a unique underlying space, a fact that was once regarded
as a weakness of the Erlangen Programme. Weyl turned it into a strength,
by considering Lie algebras that preserved only some of the structures on an
underlying space. Conformal transformations did not preserve the full Lorentz
structure, and Weyl projective transformations did not preserve the full affine
structure. Passage to Lie algebras enabled Weyl to exploit the similarities –
which would be called the differentiable structure today – to explore the dif-
ferences.

From this perspective, it is possible to view the work presented in this
monograph as follows:

1. First, the study of conformal structures as defined by Weyl in their “purest
form”, without reference to a notion of length, or indeed that of real num-
bers.11 This, of course, will erase the differential structure on which Weyl
based his analysis.

2. Second, the search for natural embeddings of these spaces – if any – into
others that can carry a differential structure.

It is interesting to ask whether or not a similar programme can be car-
ried out for the Weyl projective structure. The results of Ehlers, Pirani and

8 Note that this projective structure is not related to the real projective spaces
RPn, which are nonorientable manifolds.

9 The reference here is to the Erlanger Programm of 1872. See, for instance, [7].
10 The term Lie algebra was coined by Weyl himself.
11 “The introduction of numbers as coordinates. . . is an act of violence. . . ”, Hermann

Weyl [120], quoted in [50].
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Schild12 [32] suggest that the answer would be in the affirmative, but such an
analysis has not yet been carried out.

The above remarks also explain our choice of title for this volume.

2.4 Weyl on the Geometry of Space-Time

The Fourth Edition of Weyl’s Raum–Zeit–Materie was translated into Eng-
lish under the title Space–Time–Matter [115] in 1922. Weyl prepared a fifth
German edition [116], with an expanded chapter on the General Theory of
Relativity, which appeared in 1923. The physics behind the conformal and
projective structures was explained in this edition (Chap. IV), but their “in-
finitesimal geometry” (which would be called differential geometry today) was
not elaborated.

The mathematical arguments that led to Weyl’s conformal (2.5) and pro-
jective (2.6) curvature tensors are given in full in Eisenhart’s Riemannian
Geometry [35]. Weyl’s original account of the conformal curvature tensor was
published in 1918, in [113]. The projective curvature tensor made its first ap-
pearance in 1921, in [114], which was probably Weyl’s most detailed work on
the subject. An account in English, entitled On the foundations of general
infinitesimal geometry and written by Weyl himself, appeared in 1929 [119].

In the preface to the fifth edition of Raum–Zeit–Materie, Weyl mentioned
his group-theoretical analysis of the subject, and directed the reader to his
1922 lectures (in Barcelona and Madrid) on the Mathematische Analyse des
Raumproblems which was due to be published, in Spanish, by the Institut
d’Estudis Catalans (Barcelona). He added that it would perhaps be published
in German as well; it was, by Julius Springer in Berlin, in 1923 [117]. No
English translation has appeared.

Weyl’s philosophical reflections on space-time are never far from the
physics and mathematics in Raum–Zeit–Materie. A version addressed chiefly
to philosophers was published in 1926 [118]. A revised and augmented English
translation was published by the Princeton University Press in 1949 [120].

Weyl’s papers have been reprinted in four volumes in his Gesammelte
Abhandlungen (Collected Papers). Papers [113] and [114] are to be found in
Vol. II, and [119] in Vol. III.

In 1985, the hundredth anniversary of Weyl’s birth, the university of Kiel
organized an “International Hermann Weyl Congress” on Exact Sciences and
their Philosophical Foundations. Twenty lectures given at this congress, cov-
ering the entire range of Weyl’s work on mathematics, physics and the phi-
losophy of science, edited by Deppert, Hübner, Oberschelp and Weidemann,
were published in [21].

In 1988, ETH Zürich organized a Weyl Centenary celebration. The Weyl
Centenary volume, [18], contains articles by C. N. Yang (Hermann Weyl’s

12 This work will be discussed in Chap. 10.
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Contribution to Physics), Roger Penrose (Hermann Weyl, Space-Time and
Conformal Geometry) and Armand Borel (Hermann Weyl and Lie Groups).
On this occasion, the ETH also published a selection of Weyl’s papers in one
volume, entitled Selecta Hermann Weyl [122]. Paper [114] is reprinted in this
volume.

In 1994, the Deutsche Mathematiker Vereinigung organized a seminar on
Weyl’s “contributions to the rise of general relativity and unified field theo-
ries”. The book Hermann Weyl’s Raum-Zeit-Materie and a General Introduc-
tion to his Scientific Work [93], published in 2000, grew out of this seminar.
It consists of two parts. The first is devoted to “Historical Aspects of Raum–
Zeit–Materie”, with contributions by S. Sigurdsson, E. Scholtz, H. Goenner
and N. Straumann. The second part, by R. Coleman and H. Korté, is on “Her-
mann Weyl: Mathematician, Physicist, Philosopher”. The volume is aimed at
mathematicians, physicists and historians and philosophers of science, and
has an extensive bibliography.
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Light Rays and Light Cones

In this chapter we shall embark upon an axiomatization of Einstein-Weyl
causality on a set M consisting of points in the sense of Euclidean geometry.1

Our aim is to investigate the mathematical consequences of Einstein-Weyl
causality at the local level, and we therefore assume that M carries no pre-
defined mathematical structure. Causal structures have been investigated by
other authors, but mainly on spaces which already carried other structures
such as a manifold structure (the work of Kronheimer and Penrose is a notable
exception). Two of these will be discussed in some detail in Chap. 10.

Initially, the only proof techniques at our disposal are the basic ones: by
explicit construction, or by contradiction. As a result, the argument may, at
times, seem burdensome. We shall try to mitigate this by breaking up long
proofs into smaller propositions, and by providing examples in two and three
dimensional Euclidean space which can be drawn or visualized.

3.1 Light Rays and Order

There are several types or order on Minkowski space. There is, for example,
the partial timelike order which corresponds to the physical constraint that a
massive particle cannot attain the velocity of light. There is the partial order
defined by light cones, which identifies the velocity of light as the fastest
possible signal velocity; and then there is the order on the space-time path of
an individual object or particle, which is a total order. Each is an essential
component of Einstein–Weyl causality.

The aim of a mathematical “axiomatization” of Einstein–Weyl causality
should presumably be to endow a point-set with the above properties via the
weakest possible set of axioms. Clearly, as the structure is so rich, there are
many possible points of departure. The one that we have chosen – after a

1 By implication, we are assuming that the notion of a geometrical point makes
physical sense, an assumption that should be made explicit.

H.-J. Borchers and R.N. Sen: Mathematical Implications of Einstein–Weyl Causality,
Lect. Notes Phys. 709, 15–30 (2006)
DOI 10.1007/3-540-37681-X 3 c© Springer-Verlag Berlin Heidelberg 2006
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good deal of experimentation – is the total order on the space-time paths of
light rays in vacuo.2 In future, we shall use the term light rays as a shorthand
for these paths, and the shorthand causal order to denote the collection of
orders – partial or total – that reflect the physical principle of Einstein–Weyl
causality.

Remarks 3.1.1 (The terminology of order) The terminology of order is
not uniform, even in standard textbooks. For example, Kelley [57] regards
order to be synonymous with partial order, and defines it to be a relation that
is transitive. Dugundji [30], Munkres [77] and Willard [130] define partial order
to be a relation that is reflexive, antisymmetric3 and transitive. Munkres,
additionally, defines strict partial order to be a relation that is transitive but
nonreflexive; according to his definition, a strict partial order is not a partial
order. Finally, in Kelly’s definition ([57], p. 14), linear order is antisymmetric,
but not necessarily reflexive. As far as we know, this lack of uniformity does
not cause any confusion.

We shall use the term order in the sense of Kelley; that is, we shall assume
neither reflexivity nor antisymmetry. When an order relation satisfies one or
both of these conditions, we shall state it explicitly. Finally, we shall use the
term total order for an order that satisfies the comparability condition, i.e.,
if the order < is defined on X, x, y ∈ X, x �= y, then either x < y or y < x.

3.1.1 Light Rays and the Order Axiom

Thus, the fundamental objects in our scheme will be:

i) A nonempty set of points M .

ii) A distinguished family of subsets of M , called light rays.

iii) A total order <l (equivalently, l> ) on every light ray.

Points of M will be denoted by lower-case Latin letters. Light rays will be
denoted by the letter l. lx will denote a light ray through the point x, lx,y a
ray through x and y, etc. Distinct rays will be distinguished by superscripts,
thus l, l′, l1x, l2x, etc. The statements x <l y and y l> x (read: x precedes y, or
y follows x) will be identical. The notation x <ll y will mean that x <l y and
x �= y. The statement “x and y are joined by a light ray” will be abbreviated
“λ(x, y)”, and its negation (no light ray passes through both x and y) by
“∼ λ(x, y)”. These notations will be used in what follows without further
comment.

A light ray will be assumed to satisfy the following:
2 In Minkowski space these paths are straight lines with s(x, y) = 0, x, y ∈ l, where

s(x, y), the Minkowski form, is given by (2.2). This picture is abstracted from
geometrical optics in the absence of dispersion.

3 A relation R is called antisymmetric if aRb and bRa imply a = b.
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Axiom 3.1.2 (The order axiom)

a) If x, y ∈ l and x �= y, then either x <l y or y <l x; if x <l y and y <l x,
then x = y.

b) If x, z ∈ l, x <ll z, then ∃ y ∈ l such that x <ll y <ll z.

c) If y ∈ l, then ∃x, z ∈ l such that x <ll y <ll z.

d) If x, y ∈ l1 ∩ l2, then x <l1 y ⇔ x <l2 y. �

(We shall use the symbol � to denote the end of the statement of an axiom, a
definition or a group of related definitions. See, however, footnote 4 on p. 18.)

Here condition a) merely states that the order <l is reflexive and antisym-
metric. Condition b) states that between any two distinct points on a light
ray there exists a third; it will, for this reason, be referred to as the density
axiom. Condition c) states that light rays do not have end-points (end-points
or singularities are admissible if they are not considered as parts of the space);
and d) states that if the intersection of two light rays contains two distinct
points, then these two points are similarly ordered with respect to the two
rays; see Fig. 3.1. In the figure, the arrowheads denote the “direction of travel”
of the light rays, and this part of the axiom may be thought of as saying that
light rays do not travel “backward in time”. It is a consistency condition that
does not have to be imposed on Minkowski space.

l1

l2

Allowed

l1

l2

Forbidden

Fig. 3.1. Illustrating the Order Axiom, Part d)

Our first problem is to extend the order on light rays to a partial order
on all of M . This would hardly be possible if M were to consist of separate
nontrivial pieces. However, we have not yet defined the term “separate” in the
present context, and we proceed to fill this gap. We shall do this in two steps.
In the first step, we shall ensure that if M contains a part of a light ray, then
it contains the entire light ray. In the second step, we shall ensure that any
point of M can be reached from any other point by a path consisting entirely
of segments of light rays. It would be convenient to define two new concepts.
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3.1.2 l-Completeness and l-Connectedness

We begin with the following definition:

Definition 3.1.3 A subset N of M will be called l-complete if x ∈ N, l 

x ⇒ l ⊂ N . �

In words, if the subset N contains any part of a light ray, it contains the whole
ray.

We shall now show that excising an l-complete subset from an l-complete
set leaves an l-complete set, and that the property of l-completeness is stable
under unions and intersections. Formally:

Lemma 3.1.4 Let {Nα}α∈A be an indexed family of l-complete subsets of
M . Then

a) M \ Nα is l-complete.

b)
⋂

α∈ANα is l-complete.

c)
⋃

α∈ANα is l-complete.

Proof: The proofs are straightforward:

a) Let x ∈ M\Nα, lx 
 x. Then x �∈ Nα, and therefore, by the l-completeness
of Nα, lx ∩ Nα = ∅. Hence y ∈ lx ⇒y ∈ M \ Nα, and therefore lx ⊂
M \ Nα.

b) x ∈
⋂

α∈ANα ⇒ x ∈ Nα ∀α ∈ A, therefore lx ⊂ Nα for any l through x
and any α ∈ A, hence lx ⊂

⋂
α∈ANα.

c)
⋂

α∈A(M \ Nα) = M \ (
⋃

α∈ANα), and therefore⋃
α∈A

Nα = M \
⋂

α∈A

(M \ Nα) .

The result now follows from a) and b). �
(We shall use the symbol � to denote “end of proof”. On occasion, when

the proof precedes the statement of the result, the symbol will be placed at
the end of the statement.4)

Construction of l-Complete Sets. Given any subset W of M , we would
like to construct the “smallest” l-complete subset of M that contains W .
This construction is as follows. Let A be any well-ordered set without largest
element. Denote the smallest member of A by 0, and the successor of α ∈ A
by α + 1. Let
4 The symbols � and � will not be used for definitions or results that are part

of the standard literature, e.g., Theorem 6.1.4 or the definitions and theorems in
Appendix A.
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K0
W ≡ W ⊂ M, W �= ∅, otherwise arbitrary , (3.1)

K1
W ≡ {y ; y ∈ lz, z ∈ K0

W } \ K0
W . (3.2)

In words, K1
W consists of all points on all light rays that pass through points

of W, minus the set W = K0
W itself. Now define inductively

Kα+1
W ≡ {y ; λ(y, z), z ∈ Kα

W } \
{ ⋃

β≤α

Kβ
W

}
, α > 0 . (3.3)

Note that x ∈ Kα+1
W ⇒ x �∈ Kα

W . Finally, define

KA
W ≡

⋃
α∈A

Kα
W . (3.4)

By construction, x ∈ KA
W ⇒lx ∈ KA

W for every l through x, that is, KA
W is

l-complete.
The reader may be puzzled by condition (3.3) of the above construction,

which ensures that the intersections Kα
W ∩ Kα+1

W are empty; it is clearly not
needed for the purpose of defining the union KA

W . This condition, together
with (3.4), is designed to facilitate the constructive proof of Theorem 3.1.5
below.

In particular,5 taking A = N, we find that the subset KN

W of M is l-
complete. Define now the intersection of all l-complete sets containing W :

NW ≡
⋂

W⊂N,

N is l-complete

N (3.5)

By Lemma 3.1.4, NW is l-complete, and therefore

NW ⊂ KN

W . (3.6)

However, we have:

Theorem 3.1.5
NW = KN

W .

Proof, abstract: In view of (3.6), it remains to prove that NW ⊃ KN

W . For
this, it suffices to observe that N is contained in every well-ordered set without
largest element. �

This result, although simple, is of considerable practical significance. The
constructive proof given below provides a foretaste of this:

5 We shall use the symbol N to denote the set of nonnegative integers; for historical
reasons, it is often used in the literature to denote the set of positive integers. We
shall denote the latter set by N+.
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Proof, constructive: If a0 ∈ KN

W , then ∃n ∈ N such that

a0 ∈ Kn−1
W , a0 �∈ Kn

W .

Next, bj ∈ Kn−j
W ⇒ ∃ bj+1 ∈ Kn−j−1

W such that λ(bj , bj+1) but ∼λ(bj , bj+2).
Therefore there exists a set of points {a0, a1, . . . , an} such that

ai ∈ Kn−i
W ; λ(ai, ai+1),∼λ(ai, ai+2) for i = 1, 2, . . . , n − 1 and an ∈ W .

Now an ∈ W,λ(an−1, an) imply that an−1 belongs to any l-complete set which
contains K0

W , and therefore an−1 ∈ NW . Repeating the same argument (with
K1

W replacing K0
W ), we conclude that an−1 ∈ NW ⇒ an−2 ∈ NW , and so on,

until finally a0 ∈ NW . Thus KN

W ⊂ NW .
�

Corollary 3.1.6 If y ∈ Nx = KN

{x}, then there exists a positive integer n

and a set of points {x0, x1, . . . , xn} in M , with x0 ≡ x and xn ≡ y, such that
λ(xi, xi+1) and ∼λ(xi−1, xi+1) for i = 1, 2, . . . , n − 1.

(Remark: The condition ∼λ(xi−1, xi+1) may later be replaced by a different
condition, which, however, can be formulated only after the introduction of
the order topology; see also Lemma 4.2.18.)

Proof: Specialize Theorem 3.1.5 to the case W = {x}, and take xi = an−i,
i = 0, 1, . . . , n, x0 = x, xn = y.

�
Corollary 3.1.7

y ∈ Nx ⇔ x ∈ Ny .

Proof: The subset {x0, x1, . . . , xn} (in reversed order) is equally a subset of
the set Ny.

�

Theorem 3.1.8 The relation x ∼ y iff Nx = Ny is an equivalence relation.

Proof: Follows from the properties of the equality sign in Nx = Ny.
�

These equivalences classes are the “connected” pieces that we have been
looking for. They are important enough to be given a name.

Definition 3.1.9 M will be called l-connected iff M = Nx ∀x ∈ M (i.e. if M
consists of a single equivalence class). �

The condition of l-connectedness rules out fibrations in which a light ray
stays inside a fibre.

From now on we shall make the following nontriviality assumptions with-
out further comment:
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Assumptions 3.1.10 (Nontriviality assumptions)

a) M is nonempty, and does not consist of a single point.
b) M does not consist of a single light ray.
c) M is l-connected.

Definition 3.1.11 (Open and closed segments)

l(a, b) ≡ {x ; x, a, b ∈ l, a <ll x <ll b} ,

l[a, b] ≡ {x ; x, a, b ∈ l, a <l x <l b} . �

l(a, b) and l[a, b] will be called open and closed segments (not intervals!) of
light rays.

A concatenation of closed right ray segments will be called an l-polygon.
An l-polygon need not be a closed figure.

Corollary 3.1.6 may be stated in words as follows: Any two points of an
l-connected space N can be joined by an l-polygon.

3.1.3 The Identification Axiom

The class of spaces satisfying the order Axiom 3.1.2 is too large for our pur-
poses. For example, nothing in the order axiom rules out the possibility that
two light rays meet, “travel” as one, but eventually split and resume their
separate identities. However, we do not want this degree of generality, and
therefore adopt the following axiom:

Axiom 3.1.12 (The identification axiom) If l and l′ are distinct light
rays and a ∈ S ≡ l ∩ l′, then there exist p, q ∈ l such that p <ll a <ll q,
and l(p, q) ∩ S = {a}. Similarly for l′. �

This axiom ensures that the intersection of two light rays contains no
“point of accumulation”; however, it allows gravitational lenses to exist (see
Fig. 3.2), and, in that sense, is grounded in physical reality.

Fig. 3.2. Illustrating the Identification Axiom

Example 3.1.13 Let M be the cylinder S1 × R, with base S1 placed hor-
izontally. Let the light rays through any point be two lines each making an
angle of π/4 with the vertical at that point. These two rays intersect infinitely
many times. This example fulfills the order and identification axioms.
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Example 3.1.14 This example consists of the one-sheeted hyperboloid (de
Sitter space6), pictured so that the circular sections are horizontal. The light
rays are the families of generators. Therefore two light rays do not intersect
more than once.

The cylinder and the one-sheeted hyperboloid are topologically indis-
tinguishable. Clearly, their order structures are very different, and, equally
clearly, this difference appears at the global and not at the local level. These
examples show that the order structure may be able to distinguish between
topologically identical structures.

3.2 Construction of Cones

We shall now extend the total order on the light rays to a partial order on all
of M . We shall do this by identifying “light cones” on M and determining the
“interiors” and “boundaries” of these cones. For the moment, we are using
the latter terms in an intuitive sense – no topology has yet been placed on
M . We begin with the following definition:

Definition 3.2.1 A subset W ⊂ M will be called increasing (respectively
decreasing) if

x ∈ W, y l> x ⇒ y ∈ W

(respectively x ∈ W, y <l x ⇒ y ∈ W ) . �

Increasing and decreasing subsets can be constructed by an inductive
process similar to the construction of l-complete sets in the previous section.
We are interested in the smallest increasing (respectively decreasing) subset
containing a given point x: from Def. 3.2.1 one sees that the property “increas-
ing” (respectively “decreasing”) is stable under set-theoretic intersections.

Using increasing and decreasing subsets, we define cones as follows:

Definition 3.2.2

C+
x ≡

⋂
W�x

W increasing

W

C−
x ≡

⋂
W�x

W decreasing

W

and
6 Let M be a locally Minkowski space of constant (Gaussian) curvature K, calcu-

lated with the pseudo-Riemannian metric. If K = 0, then M is Minkowski space
itself. If K < 0, then M is called a de Sitter space; if K > 0, then M is called an
anti-de Sitter space.
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Cx ≡ C+
x

⋃
C−

x .

�

C+
x will be called the forward, or future cone at x. Likewise, C−x will be called

the backward, or past cone at x. The union Cx will be called the cone at x.
The following lemma will be the key technical tool for exploiting the prop-

erties of forward and backward cones:

Theorem 3.2.3 (The polygon lemma) If y ∈ C+
x , then there exist points

x0, x1, . . . , xn−1, xn ∈ C+
x such that xi <ll xi+1 for i = 0, 1, . . . , n − 1 and

∼λ(xi, xi+2) for i = 0, 1, . . . , n − 2, with x0 = x and xn = y. Similarly for
y ∈ C−

x (see Fig. 3.3).

(Note: The remark after Corollary 3.1.6 is valid also here.)

Proof: Let
W 0

x ≡ {x} ,

W k+1
x ≡

{
y; y l> z, z ∈ W k

x

}
\
{ ⋃

N�j≤k

W j
x

}
, k ∈ N .

Finally, let
W+

x ≡
⋃
k∈N

W k
x .

Clearly, W+
x is an increasing set, and if y ∈ W+

x then there exist points
x0, x1, . . . , xn = y ∈ W+

x such that xi <ll xi+1 and ∼ λ(xi, xi+2) for i =
0, 1, . . ., n − 2. It is therefore enough to prove that W+

x = C+
x . From the

definition of C+
x , W+

x ⊃ C+
x . The proof that a ∈ W+

x ⇒ a ∈ C+
x , i.e. W+

x ⊂ C+
x ,

is similar to the proof of the corresponding assertion in Theorem 3.1.5.
A similar proof holds for y ∈ C−

x . �
Let {x0, x1, . . . , xn} be a finite set of points satisfying the conditions

xi <ll xi+1 and ∼λ(xi, xi+2) (3.7)

for i = 0, 1, . . . , n − 1 and i = 0, 1, . . . , n − 2 respectively. The concatenation
of the light-ray segments l[xk, xk+1], k = 0, 1, . . . , n − 1 will be called an
ascending l-polygon from x0 to xn, or a descending l-polygon from xn to x0.
When there is no possibility of misunderstanding, the “l-” in the phrases
above will be omitted. Corollary 3.1.6 and Theorem 3.2.3 will both be called
the polygon lemma. The difference between the two will become apparent after
the cone Axiom 3.2.8 is formulated (and which would imply that the cones
are proper); Theorem 3.2.3 will then be seen to be restricted to ascending or
descending polygons, which cannot exit from the (forward or backward) cone.
Since the restriction to ascending or descending polygons will always have to
be made explicit, the precise result being referred to will always be clear from
the context.
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Fig. 3.3. The Polygon Lemma

Notations 3.2.4

The l-polygon determined by the set of points {x0, x1, . . . , xn} satisfying the
conditions (3.7) will be denoted by P (x0, x1, . . . , xn).

Corollary 3.2.5

y ∈ C+
x ⇔ x ∈ C−

y .

Proof: Consists of the observation that an ascending polygon from x to y is
equally a descending polygon from y to x. �

The polygon lemma says that if x and y are two distinct points in an
l-connected space, then y can be reached from x by traversing a finite number
of light-ray segments. This, it should be remembered, is a consequence of our
definition of NW (construction of l-complete sets, (3.5)) as the “smallest”
l-complete set containing W . It would have been possible, at that stage, to
define NW as the intersection of all l-complete sets which are obtained by
repeating the process (of joining with light rays) a transfinite (corresponding
to a given cardinality) number of times, which would have led to transfinite
l-polygons. However, we are eschewing this degree of generality.

We are now ready to extend the definition of order.

Definition 3.2.6 Define

x < y (or y > x) iff y ∈ C+
x ;

equivalently,
x < y (or y > x) iff x ∈ C−

y . �

Observe that if λ(x, y) then x < y ⇒ x <l y.
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The basic result follows quickly:

Theorem 3.2.7 < (or >) defines a reflexive partial order on M .

Proof: By definition, x ∈ C+
x , and therefore x < x. To prove transitivity, let

x < y, y < z. Then there is an ascending polygon from x to y, and one from
y to z. The concatenation of the two is an ascending polygon from x to z,
hence x < z. �

However, the order relation “<” is not antisymmetric. Let us begin by
considering the physics. Owing to parts a) and c) of the order axiom (Axiom
3.1.2), a light ray cannot form a closed loop. But there is nothing to prevent
the existence of closed timelike curves7 and (physical) pathologies that follow
from it, as shown by Example 3.2.9, which satisfies the order and identification
axioms. We need a new axiom to eliminate these pathologies:

Axiom 3.2.8 (The cone axiom)

C+
x

⋂
C−

x = {x} ∀x ∈ M �

Example 3.2.9 This example consists of the two-dimensional anti-de Sitter
space. Like the two-dimensional de Sitter space (Example 3.1.14), this is also a
one-sheeted hyperboloid in which the light rays are the generators. However,
interiors and exteriors of light cones are interchanged in the de Sitter and
the anti-de Sitter spaces. Consequently, the anti-de Sitter space admits closed
timelike curves, which the de Sitter space does not. The configuration is shown
in Fig. 3.4.8

This example satisfies the order axiom and the identification axiom, but
violates the cone axiom.

With the addition of the cone axiom, we have:

Proposition 3.2.10 In a space M in which the cone axiom is satisfied, the
order “<” is antisymmetric.

Proof: Suppose that x < y and y < x, i.e., y ∈ C+
x and x ∈ C+

y . By Corollary
3.2.5, x ∈ C+

y ⇒ y ∈ C−x , and therefore y ∈ C+
x ∩C−x . Therefore, by the cone

axiom, y = x. �

7 The precise definition of timelike curves is given in Def. 8.1.1, p. 103.
8 We have chosen the anti-de Sitter space to illustrate the violation of the cone

axiom because this space supports the Maldecena conjecture of string theory. In
this case one has the anti-de Sitter space – conformal field theory (AdS-CFT)
correspondence. For details, see the works of Rehren [87, 88] and Dütsch and
Rehren [29], and references therein.
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Fig. 3.4. This Anti-de Sitter Space Violates the Cone Axiom

Forward and backward cones have the following inclusion property:

Proposition 3.2.11

x < y ⇔ C+
x ⊃ C+

y ⇔ C−
x ⊂ C−

y .

Proof:

i) Let z ∈ C+
y . Then y < z, therefore x < y ⇒ x < z, i.e., z ∈ C+

x . Thus
x < y ⇒ C+

x ⊃ C+
y .

ii) If C+
x ⊃ C+

y , then y ∈ C+
x , i.e., x < y.

This establishes that x < y ⇔ C+
x ⊃ C+

y . The equivalence x < y ⇔ C−
x ⊂ C−

y

is established similarly. �

Notations and Terminology 3.2.12

The intersection of a light ray lx through x with the forward cone at x will
be called the forward ray through x and denoted thus:

l+x ≡ lx
⋂

C+
x .

Similarly, the backward ray through x will be defined as l−x ≡ lx ∩ C−
x . Fur-

thermore, if x <ll y, the notation l+x,y will be used to denote the forward ray
through x which passes through y. Similarly, l−y,x will denote the backward
ray from y which passes through x.

Henceforth we shall use the terms forward and backward rays, and the
notations defined above, without comment.

3.2.1 Timelike Points

In a Minkowski space the boundary of the light cone through x consists of
the set of all light rays through x. An interior (future) point y may be char-
acterized by the fact that, given any light ray lx through x, there exists a
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descending polygon from y to x that meets lx at a point above9 x. This latter
property may be used to define “interior” points in our present setting. The
“boundary” will then be defined as the residual set. All of this can be accom-
plished without defining a topology on M . However, to avoid confusion we
shall use a modified topological terminology and notation until the topology
has been defined.

It should be noted that the finiteness of the l-polygons plays an essential
role in the following (see Theorem 3.2.3 and the comments following its proof).

Definition 3.2.13

a) A point z ∈ C+
x will be called a timelike point of C+

x if, for any ray lx 
 x,
∃ y ∈ l+x , y �= x such that z ∈ C+

y . The set of all timelike points of C+
x will

be denoted by τC+
x , and called the τ -interior of C+

x .

b) The set τC−
x is defined similarly, i.e., by interchange of order. �

Lemma 3.2.14 y ∈ τC+
x and z > y ⇒ z ∈ τC+

x , and the same for reversed
order.

Proof: For any lx there exists, by Def. 3.2.13 above, a point r ∈ l+x with
y ∈ τC+

r . Since > defines a partial order (Theorem 3.2.7), the relation z > y
implies z ∈ C+

r . Hence z ∈ τC+
r . The result for reversed order follows in the

same manner. �
Lemma 3.2.14 implies that if a light ray enters τC±x at its tip then it stays

inside the light cone (“inner” light rays). This situation has to be excluded on
physical grounds, and will be done via the local structure Axiom 4.2.1, which
will be introduced in the next chapter.

Definition 3.2.15

βC+
x ≡ C+

x \ τC+
x , βC−

x ≡ C−
x \ τC−

x .

�

We shall call τC+
x and βC+

x the τ -interior and the β-boundary of C+
x respec-

tively (and similarly for C−
x ).

Remarks 3.2.16

1. Examples show that βC+
x and ∂C+

x may be different. A simple one is the
two-dimensional Minkowski space with the strip x ≥ y, 0 ≤ y ≤ 1 excised,
as shown in Fig. 3.5. The light ray l (dashed line) extending northeast
from the point (1, 1) does not belong to the cone C+

x (shaded region). It
is, however, part of the topological boundary ∂C+

x of C+
x .

9 To remove any possible misunderstanding, we remark that we shall use the terms
“above x” (respectively “below x”) to mean “in the forward (respectively back-
ward) cone at x”.
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Fig. 3.5. Illustrating that βC+
x and ∂C+

x may be different

2. Note carefully that y ∈ βC+
x , y �= x does not yet imply that y lies on a

light ray through x; this desirable property will be established later using
the convexity Axiom 4.2.1.d.

Definition 3.2.17

I[a, b] ≡ C+
a

⋂
C−

b ,

I(a, b) ≡ τC+
a

⋂
τC−

b .

The sets I(a, b) and I[a, b] will be called, respectively, open and closed
order intervals. When the order topology is defined (Sect. 4.5), open and
closed order intervals will turn out to be, respectively, open and closed sets,
provided that there are no holes or cuts as in Fig. 3.5. �

Remarks 3.2.18

It follows from the above definitions that (see also the Remark 4.2.2)

1. I[a, a] = {a}, I(a, a) = ∅.
2. If a �< b, a �= b then I[a, b] = ∅.

In words, the second remark states that if a and b are mutually spacelike (see
3.2.24 at the end of this section for the terminology), or if b � a, then the
order interval I[a, b] is empty.

In the rest of this section we shall establish a few results that we shall
need in later chapters. These results may be intuitively obvious in Minkowski
space, but, as the examples of Figs. 3.5 and 3.6 show, require proof in the
present context.
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Proposition 3.2.19 Let y > x. Then the statements 1 and 2 (respectively 1′

and 2′) are equivalent:

1. y ∈ τC+
x ;

2. βC+
x ∩ C+

y = ∅.

1′. x ∈ τC−
y ;

2′. βC−
y ∩ C−

x = ∅.

Proof:

Owing to symmetry, it suffices to establish one of the two equivalences:

1 ⇒ 2:
Let y ∈ τC+

x , and z ∈ βC+
x ∩C+

y . Then z > y, hence z ∈ τC+
x by Lemma

3.2.14, a contradiction.
2 ⇒ 1:

Since y ∈ C+
y , βC+

x ∩C+
y = ∅ ⇒ y �∈ βC+

x . But y ∈ C+
x , therefore y ∈ τC+

x .
�

Although y ∈ C+
x ⇔ x ∈ C−

y (Corollary 3.2.5), it does not follow that

y ∈ τC+
x ⇔ x ∈ τC−

y ; (3.8)

statements about τC+
x and τC−

y are unrelated (see Def. 3.2.21 and Fig. 3.6).
However, if the equivalence (3.8) holds, then it can be expressed in several
different ways:

Proposition 3.2.20 The following statements are equivalent:

1. y ∈ τC+
x ⇔ x ∈ τC−

y ;

2a. y ∈ τC+
x ⇒ ∀ l 
 y ∃ z ∈ l−y , z �= y, such that z > x; and

2b. x ∈ τC−
y ⇒ ∀ l 
 y ∃ z ∈ l+x , z �= x, such that z < y.

Proof:

1 ⇒ 2:
If y ∈ τC+

x ⇒ x ∈ τC−
y , then (from the definition of τC−

y ) ∀ l 
 y, ∃ z ∈ l−y
such that z > x, i.e., 2a holds. Similarly, if x ∈ τC−

y ⇒ y ∈ τC+
x , it follows

that 2b holds.
2 ⇒ 1:

Assume that y ∈ τC+
x , and ∀ l 
 y, ∃ z ∈ l−y , z �= y, such that z > x. Then

x ∈ τC−
y . The same holds with the order reversed. �



30 3 Light Rays and Light Cones

Definition 3.2.21 An ordered space M will be said to have the property S
(from symmetry) if

y ∈ τC+
x ⇔ x ∈ τC−

y .

In this case M will be called an S-space, and we shall write

y � x iff y ∈ τC+
x . �

Theorem 3.2.22 In an S-space the relation � defines a (nonreflexive, non-
symmetric) partial order.

Proof: Transitivity is a consequence of Lemma 3.2.14. �

Remarks 3.2.23

1. If we define y � x iff x ∈ τC−
y , then, from Proposition 3.2.20, x

� y ⇔ y � x.
2. Property S is not automatic, as shown by the example of Fig. 3.6. Two-

dimensional Minkowski space is cut in two along the X-axis, leaving only
the single point O to connect the half-planes. As the figure shows, descend-
ing l-polygons from b meet each of the two light rays from a at points above
a. Therefore, by Def. 3.2.13, b ∈ τC+

a . However, no ascending l-polygon
from a can meet the ray l1−b at a point below b. Therefore a �∈ τC−b .



..................................................................................................................................................................
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
........

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
............
...........
............
...........
............
...........
...........
......................................................................................................................................................................................................................

a

b

l2−b l1−b

O

Fig. 3.6. Illustrating the Need for Property S

Terminology 3.2.24 In keeping with the usage in physics, we shall say that
the points x, y are spacelike, timelike or lightlike with respect to each other
according as i) x �∈ Cy, ii) x � y (or x � y) or iii) λ(x, y). These three cases
exhaust all possibilities.
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Local Structure and Topology

4.1 Preliminary Remarks

There are many procedures for defining a topology on a space M . We select
two for attention. In the first case, one may have a preferred family of functions
defined on M . It may then be reasonable to consider the coarsest (weakest)
topology on M which makes each of these functions continuous. In the second
case, one may wish the space M to have strong homogeneity properties. Then
M should be “glued together” from isomorphic copies of the same object.

In the present situation, we do not have a preferred family of functions on
M . In view of Lebesgue’s theorem that monotonic functions on the real line
are differentiable almost everywhere, it would be tempting to try to define the
topology via monotonic functions. But functions like the devil’s staircase (see,
for example, [22]) prevent this class from being really useful. Next, we may
ask whether, on an ordered topological space, there is some sense in which
order is continuous. If there is, is the coarsest topology which makes order
continuous a useful one? Regarding the continuity of the order, let us recall
the definition given for the ordered real line [57]: The order “<” is continuous
if, given x < y, x �= y, there exist neighbourhoods U of x and V of y such
that u < v whenever u ∈ U and v ∈ V . And indeed, on R it turns out that
the order topology (which coincides with the usual topology) is the coarsest
topology which makes the order continuous.

Unfortunately, this definition fails to provide a physically acceptable topo-
logy in higher dimensions. To see this, consider two-dimensional Minkowski
space, and two distinct point x and y on any light ray, with x < y. With the
usual topology of this space, every neighbourhood of y contains points that
are spacelike to x, and vice versa; the requirement that u < v whenever u ∈ U
and v ∈ V , with U and V defined as above, cannot be met. In other words,
with the usual topology, and with the above definition of the continuity of
order, order is not continuous!

The concept of the order topology is, however, a useful one in ordered
vector spaces, where it may be defined via order intervals. In our setting,

H.-J. Borchers and R.N. Sen: Mathematical Implications of Einstein–Weyl Causality,
Lect. Notes Phys. 709, 31–50 (2006)
DOI 10.1007/3-540-37681-X 4 c© Springer-Verlag Berlin Heidelberg 2006
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order intervals can have holes, and therefore not all of them will be suitable
for our purposes. In Sect. 4.5 we shall show how the topology can be defined
by “good” order intervals.

The precise manner that we have chosen to define the order topology is
also reminiscent of the way in which differentiable manifolds are defined. That
is, we make a distinction between the local and the global and demand that
the order structure satisfy a strong homogeneity condition. The only way to
determine a satisfactory condition is by trial and error. The choice that we
have made, and its consequences, are presented in the following.

4.2 D-Sets and their Properties

We wish to embed every point in a neighbourhood which has all the desirable
properties. The paradigm for this neighbourhood, which will be called a D-set
(from the German Durchschnittseigenschaft), is the interior of a double cone
(Int C+

x ∩C−
y ) in Minkowski space. An important property of a D-set is that it

is an S-space (Def. 3.2.21). This, and a number of other properties that may
not hold globally, hold locally–that is, in D-sets. The definition of a D-set is
as follows.

Definition 4.2.1 A subset U of M will be called a D-set iff it fulfills the
following conditions:

a) x, y ∈ U ⇒ I[x, y] ⊂ U (Fig. 4.1(a)).
In words, U contains the entire (closed) order interval between any two
of its points.1 (If M were an ordered topological vector space, this would
mean that U is order-convex. Although our ordered spaces are not gene-
rally linear spaces, we shall find it useful to employ the term order-convex
in this sense.)

b) For every x ∈ U and every l 
 x, there exist points p, q ∈ l ∩ U such that
p <ll x <ll q (Fig. 4.1(a)).
In words, the intersection of a light ray with a D-set does not have a
minimal or a maximal point.

c) If y ∈ U , r ∈ τC−
y ∩ U and lr 
 r, then (Fig. 4.1(b), upper part)

l+r ∩ {βC−
y \ {y}} ∩ U �= ∅ ,

and the same for reversed order.
In words, in a D-set, a forward ray from the τ -interior of a cone inter-
sects its backward β-boundary below its vertex, and the same for reversed
order.2

1 Recall that if two points are spacelike to each other, then the order interval
between them is, by definition (Def. 3.2.17), the empty set.

2 It is worth remarking that this condition may not hold globally even in an ordered
space which is homeomorphic with some Rn and in which two light rays do not
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Fig. 4.1. Some defining properties of D-sets

d) If x ∈ U and l′∩βC+
x ∩U contains two distinct points a, b, then (Fig. 4.1(b),

lower part)
x ∈ l′a,b ∩ C+

x ∩ U ⊂ βC+
x ∩ U ,

and the same for reversed order.
In words, in a D-set U , a light ray that intersects the β-boundary of a
forward cone at two distinct points lies wholly on the β-boundary of that
forward cone (intersected with U), and passes through its vertex.

e) If a, b ∈ U and λ(a, b), then the ray la,b is unique.
That is, two distinct light rays cannot intersect more than once in a D-set.

f) If x ∈ U , then there pass at least two distinct light rays through x.
�

Remark 4.2.2 (Addendum to Remarks 3.2.18)

One may add the following to the Remarks 3.2.18: If U is a D-set, a, b ∈ U
and b ∈ βC+

a , then I[a, b] = l[a, b] and I(a, b) = ∅.

Remark 4.2.3 (About the Figures)

In many of the diagrams, the boundary of the D-set under consideration is
shown by a broken line enclosing an oval or a circular area. This is purely
schematic, as disks and ovals in two-dimensional Minkowski space are not D-
sets; they are not order-convex. Consider the disk K of radius

√
2 and centre

(x, y) = (0, 0) in R2. Denote the points (−1,−1) and (−1, 1) on its perimeter

intersect more than once. An example is provided by the universal cover of the
anti-de Sitter space of Example 3.2.9. Coverings of ordered spaces are discussed
in Sect. 8.5.
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by a and b respectively. Then βC+
a ∩ βC−b = {(−2, 0), (0, 0)}. A substantial

part of I[a, b] lies outside the disk K, which shows that its interior cannot be
order-convex.

Observe that the empty set ∅ satisfies all of these conditions trivially, and
is therefore a D-set.

Remark 4.2.4 Condition d) of Def. 4.2.1 will be called the convexity ax-
iom. The reason for this terminology is as follows. In a linear space Condition
4.2.1.d) implies that the base of a light cone is absolutely convex, or equiv-
alently that the faces of the cone are one-dimensional. (Recall that a closed
convex set S is called absolutely convex if every straight line that meets ∂S
at two distinct points also contains interior points of S.)

Remark 4.2.5 A D-set will be called l-convex, meaning that a light ray from
its interior intersects its boundary3 at exactly two points. However, it is not
necessarily convex. Take a closed order interval in a D-set and drag it along
an equatorial circle so that the doughnut-shaped object produced lies entirely
in a D-set. This object is the closure of a D-set, but it is not a convex body
(see Fig. 4.2; the shaded region is the “hole” in the doughnut).

Lemma 4.2.6 Let U be a D-set and I[a, b] ⊂ U a (closed) order interval.
Let x ∈ I(a, b). Then any light ray through x intersects βI[a, b] at exactly two
points, one lying on βC+

a and the other on βC−b .

Proof: This follows immediately from the Definitions 4.2.1.c) and 4.2.1.d).
�

The need for considering order intervals (open or closed) that lie entirely
in D-sets will arise so frequently that it would be useful to give them a name:

Terminology 4.2.7 (D-intervals) An order interval I(a, b) or I[a, b] that
lies entirely within a D-set will be called a D-interval.
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Fig. 4.2. A D-Set is not necessarily convex

We shall now establish the basic properties of D-sets. For the convenience
of the reader, we shall group the results into classes, although the classes will
3 At this stage we cannot make the above remark into a formal definition, because

the topology (and therefore the term boundary) has not yet been defined.
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not be wholly disjoint. Initially, we shall allow ourselves a certain “abuse of
notation”, as explained in the following remark.

Remark 4.2.8 (Abuse of notation) Recall that the partial order � is de-
fined only on spaces that have the property S (see 3.2.21 and 3.2.22). In the
following, we shall prove (in Theorem 4.2.15) that every D-set enjoys the
property S. However, we shall, by abuse of notation, write x � y instead of
x ∈ τC−y and q � p instead of q ∈ τC+

p in D-sets for stating and proving
the results 4.2.9–4.2.14 which precede the proof of Theorem 4.2.15. This is
harmless, as property S is not invoked in the proofs of these results.

a) D-sets and timelike order

In Sect. 8.1 we shall see that, in a D-set, there exist subsets totally ordered
by “�” that are homeomorphic to light ray segments. We begin by showing
here that there are “enough” points in timelike order in a D-set.

Theorem 4.2.9 Let U be a nonempty D-set, and let y ∈ U . Then there exist
points x, z ∈ U such that x � y � z.

In words, every point in a D-set has a timelike predecessor and a timelike
successor4.

Proof: By condition c) of Def. 4.2.1, at least two light rays pass through
y. Let ly be one of them. Then, by Condition 4.2.1.b), there exists a point
p ∈ l+y ∩U, y <ll p (see Fig. 4.3). Then, by Condition 4.2.1.c), there is at least
one more light ray lp through p. Now, by Condition 4.2.1.b), there exists a
point z ∈ l+p ∩ U, p <ll z. Together, y <ll p, p <ll z and ∼λ(y, z) imply that
y < z. Then either y � z or z ∈ βC+

y . If z ∈ βC+
y then, since p ∈ βC+

y ,
it follows that lp ∩ βC+

y ∩ U contains two distinct points p and z. Therefore,
from the convexity Axiom 4.2.1.d), it follows that z ∈ lp ∩ C+

y ∩ U , i.e., the
ray lp passes through y, a contradiction. Therefore y � z.

The same argument, with order reversed, establishes the existence of a
point x with the desired properties. �

The next result shows that, in a D-set, between any two distinct timelike
points lies a third.

Lemma 4.2.10 Let U be a D-set, x, z ∈ U with x � z. Then there exists
y ∈ U such that x � y � z.

Proof: We have to prove that I(x, z) is nonempty. Let l+x and l−z be light
rays that intersect (such rays exist, by condition c) of Def. 4.2.1), and set
{p} = l+x ∩ l−z ⊂ U . Pick a point a ∈ l(x, p) and a point b ∈ l(p, z) (see

4 The terms predecessor and successor do not refer to immediate predecessors or
immediate successors, as the sets we deal with are seldom well-ordered.
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Fig. 4.3. Every point in a D-set has a timelike successor
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Fig. 4.4. Proving that I(x, z) ⊂ U is nonempty

Fig. 4.4), and let l−b be a second backward ray from b. This ray intersects
βC+

a at a point y, and y ∈ I(x, z). �
The final result is an immediate corollary of Theorem 4.2.9:

Corollary 4.2.11 Let U be a D-set, and let x0 ∈ U . Then there exists an
infinity of points xn ∈ U, n ∈ Z, such that xn+1 � xn for all n ∈ Z.
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Proof: Consists of the repeated application of Theorem 4.2.9 in both forward
and backward directions. �

b) Light rays from τ -interiors

Condition c) of Definition 4.2.1 states that, in a D-set, the intersection of a
forward ray from the τ -interior with the β-boundary of the cone is nonempty.
We prove below that this intersection consists of a single point:

Theorem 4.2.12 Let U be a D-set, and let x, y ∈ U with y � x. Let ly 
 y
be a light ray through y. Then

ly ∩ βC+
x

consists of a single point, and the same with order reversed.

Proof: By Proposition 3.2.19, y � x is equivalent to βC+
x ∩C+

y = ∅. But, by
Def. 4.2.1.c), if ly ∩ βC+

x is nonempty then

ly ∩ βC+
x = l−y ∩ βC+

x ⊂ I[x, y] ⊂ U .

Then, if l−y ∩ βC+
x contained two distinct points, it would follow from Def.

4.2.1.d) that
ly ∩ C+

x ∩ U ⊂ βC+
x ,

contradicting the assumption y � x. The same argument holds with order
reversed. �

c) Incidence of light rays on cone boundaries

We now investigate the incidence relations5 between light rays through the
vertex of a cone and the β-boundary of the cone. We present two results
that hold in D-sets: the first is that every point on the β-boundary of a cone
is connected to its vertex by a light ray; the second is that every light ray
through the vertex lies wholly on the β-boundary of the cone.

Lemma 4.2.13 Let U be a D-set and let x ∈ U . Let a ∈ βC+
x ∩ U, a �= x.

Then there exists a light ray lx,a such that x, a ∈ l[x, a] ∩ βC+
x and x <ll a.

Proof: Let P (x0, . . . , xn−1, xn) be any ascending l-polygon from x = x0 to
a = xn. Suppose that xn−1 ∈ βC+

x . Then, by the convexity Axiom 4.2.1.d),
x ∈ lxn−1,a, i.e., there exists a light ray lx,a through x and a, and xn−1 ∈ l[x, a].

Suppose, next, that xn−1 �∈ βC+
x . Then xn−1 ∈ τC+

x . Now a = xn > xn−1,
and therefore it follows from Lemma 3.2.14 that a ∈ τC+

x , a contradiction
which proves the result. �

5 Note that the convexity Axiom 4.2.1.d) itself is such a relation.
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Lemma 4.2.14 There are no “inner” light rays in a D-set (see the remark
after Lemma 3.2.14).

Proof: An inner light ray in C+
x is a light ray lx,z that connects x with a

point z ∈ τC+
x . By Lemma 4.2.12, a backward ray from z intersects βC+

x at
exactly one point. By Axiom 4.2.1.c), this point cannot be the point x itself.

�

d) The Property S

We now have the tools required to establish the following fundamental result:

Theorem 4.2.15 Every D-set U has the property S.

Proof: Let x, y ∈ U with y � x (y ∈ τC+
x ). Let ly 
 y. Then, by Lemma

4.2.12, l−y ∩ βC+
x is a unique point, say z. If z �= x it follows that x � y

(x ∈ τC−
y ). The case z = x is ruled out by Lemma 4.2.14. �

e) New D-sets from old

There are plenty of D-sets. We shall establish this via two results; the first is
that the intersection of two D-sets is a D-set, and the second is that an open
order interval that is contained in a D-set is itself a D-set.

Proposition 4.2.16 The intersection of two D-sets is a D-set.

Proof: Let U1, U2 be D-sets. If U1∩U2 = ∅ then it is trivially a D-set. Assume
now that U1∩U2 �= ∅. Clearly, Condition 4.2.1.a) and conditions 4.2.1.c)–f) are
stable under finite intersections. It remains to show that Condition 4.2.1.b)
continues to hold.

Let x ∈ U1 ∩ U2 and lx 
 x. Then there exist points pi, qi ∈ Ui, i = 1, 2,
such that pi, qi ∈ lx, pi <ll x <ll qi. Since lx is totally ordered it follows that
for proper choice of indices a, b,m, n (= 1 or 2), pa > pb and qm < qn. Then
pb < x < qn, pb �= x, qn �= x, and pb, qn ∈ U1 ∩ U2. �

The intersection property, Proposition 4.2.16, is the first step in defining a
topology on M with the help of D-sets. This topology will be defined later and
will be called the order topology. We shall then see that the topology induced
on light rays by the order topology of M is the standard order topology on
a totally ordered space. The validity of Condition 4.2.1.b) will then be seen
to follow from the simple fact that the intersection of two open segments of a
light ray is again an open segment of the ray.

Proposition 4.2.17 Let U be a D-set, x, y ∈ U and y � x. Then 1) I(x, y)
is a D-set; 2) I(x, y) is l-connected.

Proof of Part 1: Note that, by Lemma 4.2.10, I(x, y) is nonempty. We shall
verify that conditions a)–f) of Def. 4.2.1 hold for I(x, y) ⊂ U .
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a) Let p, q ∈ I(x, y). By Lemma 3.2.14, C+
p ⊂ τC+

x and C−
q ⊂ τC−

y . Hence
I[p, q] ⊂ I(x, y). This verifies Condition 4.2.1.a).

b) Take p ∈ I(x, y) and l 
 p. Then by Lemma 4.2.12 the sets l∩ βC+
x ≡ {r}

and l ∩ βC−
y ≡ {s} are singletons, differing from {p}. Therefore the open

segment l(r, s) belongs to I(x, y), and Condition 4.2.1.b) is fulfilled by
Axiom 3.1.2.c)–f). These are obviously true of order-convex subsets of a
D-set. This verifies Condition 4.2.1.b).
(Recall that a subset S of a partially ordered set x is called order-convex
if a, c ∈ S, a < c ⇒ b ∈ S whenever a < b < c.)

c) We have to prove that for p, q ∈ I(x, y), p � q and any forward ray l+p
through p, the intersection l+p ∩ {βC−q \ {q}} ∩ I(x, y) is nonempty. From
part a) above, I[p, q] ⊂ I(x, y). Since l+p ∩ {βC−q \ {q}} ⊂ βI[p, q], the
result follows. The same holds with order reversed.

d) If p, q ∈ I(x, y), p � q and l ∩ βC+
p ∩ I(x, y) contains two distinct points,

then, since I(x, y) ⊂ U , the result follows from Condition 4.2.1.d).

e) Follows from replacing U by I(x, y) in Condition 4.2.1.e).

f) Follows from replacing U by I(x, y) in Condition 4.2.1.f).

Proof of Part 2: To prove that I(x, y) is l-connected, we have to establish
that, for any two distinct points ak, bn ∈ I(x, y), there is an l-polygon from
ak to bn lying wholly in I(x, y).

Since y � ak � x and y � bn � x, given any forward ray l+x through
x, there exist descending polygons P (ak, . . . , a1, a0) and P (bn, . . . , b1, b0) that
meet l+x ∩ I[x, y] at points a0 and b0 above x. There are two possibilities:
1) a0 �= b0, or 2) a0 = b0.

If a0 �= b0, we may, without loss of generality, assume that a0 <l b0.
Then b1 � a0, and therefore βC−b1 ∩ l+a0,a1

is a unique point, say c. Clearly,
y � c � x, i.e., c ∈ I(x, y). If either c <l a1 or a1 <l c on la0,a1 , then the
l-polygon P (bn, . . . , b1, c, a1, . . . , ak) connects ak with bn and lies wholly in
I(x, y) (see Fig. 4.5(a)). If c = a1 the same is accomplished by the l-polygon
P (bn, . . . , b1, a1, . . . , ak).

Suppose now that a0 = b0 (see Fig. 4.5(b)). Then a2 � b0, and there-
fore l+b0,b1

∩ βC−a2
is a unique point, say d, and λ(d, a2). The l-polygon

P (bn, . . . , b1, d, a2, . . . , ak) connects ak with bn, and lies wholly in I(x, y).
�

Both parts of Proposition 4.2.17 will be used repeatedly, often without
attribution, in the sequel.

f) Remarks on D-sets and order intervals

In two-dimensional Minkowski space, U and V , order intervals with sections
removed as shown in Fig. 4.6, are D-sets. Their intersection U ∩V , also shown
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Fig. 4.5. Proving that I(x, y) ⊂ U is l-connected

in Fig. 4.6, is therefore a D-set, but it is clearly not l-connected. (For emphasis,
the two order intervals comprising U∩V have been slightly shifted with respect
to each other.) This example shows that the property of l-connectedness is not
stable under intersections. By contrast, open order intervals lying in D-sets
are l-connected D-sets.

If a D-set consists of distinct l-connected components, then these com-
ponents will be pairwise spacelike to each other. Two distinct components
cannot contain points that are timelike or lightlike to each other.

g) Incidence theorem for β-boundaries

We now investigate the intersection of two cones such that the vertex of one
lies on the β-boundary of the other. We begin with the following lemma:

Lemma 4.2.18 Let U be a D-set, x, y ∈ U and y > x. Let

x = z0 < z1 < . . . < zn = y

be an increasing l-polygon with λ(zi, zi+1), i = 0, 1 . . . n − 1. If the first two
light rays lz0,z1 and lz1,z2 are distinct, then y ∈ τC+

x . The same statement
holds with order reversed.

Proof: Owing to symmetry, it suffices to prove the first statement. By as-
sumption, one has z1 ∈ βC+

x . If z2 ∈ βC+
x then, by the convexity Axiom

4.2.1.d), lz1,z2 ⊂ βC+
x and x ∈ lz1,z2 . Since x and z1 belong to both light rays,

the two rays must be the same, a contradiction. Hence z2 ∈ τC+
x . �

The following incidence theorem follows easily from the above lemma:
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Fig. 4.6. D-sets need not be l-connected

Theorem 4.2.19 Let U be a D-set, x ∈ U and p ∈ βC+
x ∩ U, p �= x. Then

1. βC+
x ∩ βC+

p ∩ U = l+x,p ∩ βC+
p ∩ U.

2. βC+
x ∩ βC−p ∩ U = l[x, p].6

Proof: Let a ∈ βC+
p , p �= a. Then P (x, p, a) is an ascending l-polygon from

x to a (see Fig. 4.7). By Lemma 4.2.18, if lx,p �= lp,a, then a ∈ τC+
x . If

a �∈ τC+
x ∩U then necessarily a ∈ βC+

x ∩U , i.e., a, p ∈ βC+
x ∩U . Therefore, by

the convexity axiom, x ∈ lp,a. However, in a D-set two points on a light ray
fix the ray uniquely; therefore the ray lx,p is the same as the ray lp,a, which
proves the first assertion.

To prove the second assertion, note simply that, by the convexity axiom,
any point in the intersection βC+

x ∩ βC−p has to lie on the unique ray that
passes through both x and p. �
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Fig. 4.7. Illustrating Theorem 4.2.19

6 Theorem 4.2.19 is a special case of Proposition 3.2.19 that holds in D-sets. To
see this, one has to Formulate 3.2.19 entirely in terms of β-boundaries, which is
straightforward.
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h) Spacelike separation in D-sets

The results established so far in this chapter have been on pairs of points that
were lightlike or timelike to each other. We shall now establish two results on
spacelike separations in D-sets that will be important in the following.

Theorem 4.2.20 Let U be a D-set, x ∈ U and l1x, l2x two distinct light rays
through x. Choose a ∈ {(l1x)− ∩ U}, a �= x and b ∈ {(l2x)+ ∩ U}, b �= x. Then

1. b � a,
2. I(a, b) ∩ Cx = ∅,

i.e., every point of I(a, b) is spacelike to x.

Proof: The fact that b � a follows immediately from Lemma 4.2.18. Next,
Theorem 4.2.9 ensures that I(a, b) is nonempty. Finally, from Theorem 4.2.19
we have C+

x ∩ τC−b = ∅ and C−x ∩ τC+
a = ∅. Hence Cx ∩ I(a, b) = ∅. �

If r, s ∈ U and r � s then, by definition, C−r ∩U ⊂C−s ∩U and the
inclusion is such that βC−r ∩βC−s ∩U = ∅; the situation shown in Fig.
4.8(a) cannot arise. If r ∈ βC−s and r �= s then, from Theorem 4.2.19(1),
βC−s ∩βC−r ∩U = l−s,r ∩U . Therefore, if βC−r ∩βC−s ∩U �= ∅, and r �< lls,
then r and s must be spacelike to each other (Fig. 4.8(b)). Conversely:

Lemma 4.2.21 Let U be a D-set, x, r, s ∈ U such that x � r, x � s and
r, s are mutually spacelike. Then βC−r ∩βC−s ∩C+

x is nonempty.

Proof: Let lx be a light ray through x. From the definition of D-sets, lx ∩βC−r
is a single point. Call it qr. Similarly, let {qs} = lx ∩βC−s . Since qr and qs lie
on the same light ray, there are three possibilities:

1. qr <ll qs. Then Lemma 4.2.18 implies qr � s, so that the ray lqr,r intersects
βC−s at a unique point p, and p ∈ βC−r ∩βC−s ∩C+

x .

2. qr = qs. Then this point lies, by definition, on βC−r ∩βC−s ∩C+
x .

3. qs <ll qr. This is the same as the case 1) above, with r and s interchanged.
�

4.3 Timelike Order and D-Subsets

We have already seen (Theorem 4.2.9) that, in a nonempty D-set, every point
has timelike predecessors and successors. We shall now establish that ana-
logous results hold for D-subsets. These will lead to the desired separation
properties, which will be established in the next section.

Proposition 4.3.1 Let U, V be D-sets such that V ⊂U .

i) Let x ∈ V and z ∈ U \ V with x � z. Then ∃ y ∈ V with x � y � z.
ii) The same, with order reversed.
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Fig. 4.8. Difference between pairs of timelike and spacelike points

Remark: The existence of points y such that y ∈ V, y � x is the content of
Lemma 4.2.9. What remains to be proved that there exist such y ∈ V with
y � z.

Proof: It suffices to prove part i). From Condition 4.2.1.a), I[x, z]⊂U . If
I(x, z)⊂V , then every point y ∈ I(x, z) satisfies x � y � z. If I(x, z) �⊂ V ,
then for any forward ray l+x from x, there is a backward ray l

(1)−
z from z

such that {q} = l+x ∩ l
(1)−
z ∈ U (see Fig. 4.9). Next, let p ∈ l+x such that

x <l p <l q, x �= p, p ∈ V . Finally, let l
(2)−
z be a second backward ray from z,

and let {s} = l
(2)−
z ∩βC+

p . According to Condition 4.2.1.b), there exist points
y ∈ l(p, s) and y �= s such that y ∈ V . These points fulfil the requirement
x � y � z. �

After this preparation, we are able to establish the main result of this
section:

Theorem 4.3.2 Let U, V be D-sets such that V ⊂U . Let x ∈ V and z ∈ U \V
with z � x. Then we can find points u, y, w with u, y ∈ V , w ∈ U such that

u � x � y � z � w .

Proof:

a) Apply Theorem 4.2.9 to x ∈ V to obtain a point u ∈ V such that u � x.

b) Apply Theorem 4.2.9 to z ∈ U to obtain a point w ∈ U with w � z.

c) Apply Proposition 4.3.1 to x ∈ V and z ∈ U , V ⊂U , to obtain y ∈ V such
that x � y � z.

d) Then u � x � y � z � w.

�
We shall call the above theorem the timelike points theorem.
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Fig. 4.9. Illustrating Proposition 4.3.1

4.4 Separating Points by D-sets

The aim of this section is to establish Theorem 4.4.2, which states that distinct
points in a D-set can be separated by disjoint D-subsets. The proofs utilize
a method for transporting “good” properties of one cone to other cones, that
is, to spacelike separations.

We begin with the following theorem on separating points by forward and
backward cones:

Theorem 4.4.1 Let U be a D-set, y ∈ U and b ∈ U \ C−
y . Then there exists

a ∈ U \ C−
y such that b � a.

Proof: There are three possibilities, according to the location of b. They are:

1. b � y.
2. b ∈ βC+

y .
3. b �∈ C+

y .

We establish the existence of the point a case-by-case.

1. By Proposition 4.2.17, if b � y then I(b, y) is nonempty. Any point a ∈
I(y, b) will satisfy b � a.

2. By the convexity axiom, b ∈ βC+
y ⇒ λ(y, b). Take a point p ∈ ly,b with

y <ll p <ll b. Choose a backward ray l−p different from ly,b, and on it a
point a ∈ U such that a <ll p. Then Lemma 4.2.18 implies that a � b.
Since C−y ⊂C−p and βC−y ∩βC−p = ly,b ∩C−y , it follows that a �∈ C−y (see
Fig. 4.10(a)).
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Fig. 4.10. Separation by Forward and Backward Cones

3. Finally, let b �∈ C+
y . By Theorem 4.2.9 there exists z ∈ U such that z � b.

(a) If z �∈ C−y there is nothing to prove (set a = z). (b) If z ∈ βC−
y then,

by Lemma 4.2.10, there exists a ∈ U such that z � a � b. Then, by
Theorem 4.2.20, part 2, a �∈ C−y . c) If z ∈ τC−

y then, by Lemma 4.2.21,
there exists p ∈ βC−

y ∩βC−b . Choose a point z′ ∈ lp,y, z′ <ll p. Then, by
Lemma 4.2.18, z′ � b and we are back to the situation (b). �

The above separation enables us to construct a separation by D-sets.

Theorem 4.4.2 If U is a D-set, x, y ∈ U , x �= y then there exist D-subsets
V and W of U such that x ∈ V , y ∈ W , and V ∩W = ∅.

Proof: Since x �= y, the cases y ∈ C+
x and y ∈ C−

x are mutually exclusive (see
Fig. 4.11). We may therefore assume, without loss of generality, that y �∈ C−

x .
By Theorem 4.4.1, there exists a point p ∈ U such that p � y and p �∈ C−

x ∩U .
Then x �∈ C+

p .
Since x �∈ C+

p , we may apply Theorem 4.4.1 with order reversed to x
and C+

p . This gives us a point s ∈ U such that s � x and s �∈ C+
p ∩U .

Then C−s ∩C+
p = ∅. Then Proposition 4.3.1 tells us that there exist points

r, q ∈ U such that p � y � q, r � x � s. Then x ∈ I(r, s), y ∈ I(p, q),
I(p, q)∩ I(r, s) = ∅, and I(p, q), I(r, s) are D-subsets of U . �

4.5 Local Structure and Topology

In the preceding sections we have defined D-sets and have established their
fundamental properties. They lead us very naturally to the local structure
axiom and the topology.

Axiom 4.5.1 (The local structure axiom) The ordered space M satisfies
the following axiom: For each x ∈ M there exists a D-set Ux such that x ∈
Ux ⊂M . �
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Definition 4.5.2 The order topology on M is defined to be that topology
which has the family of D-subsets as a base. �

Remarks 4.5.3

1. It follows from Proposition 4.2.16 (the intersection of two D-sets is a D-
set) that the family of D-subsets of M is indeed a base for a topology on
M .

2. Theorem 4.4.2 now states that the order topology is Hausdorff.
3. A D-set is defined by its properties, and the order topology is defined using

all subsets of M that fulfil the defining conditions of D-sets. At first sight, it
might appear that one could define a finer order topology by throwing away
some “large” D-sets. However, this does not work, because the sets that
have been thrown away reappear as unions of D-sets properly contained in
them, and the set so defined will obviously satisfy all conditions required
of D-sets.

Theorem 4.5.4 In every D-set, βC+
x = ∂C+

x (the boundary of C+
x ), and

τC+
x = int C+

x (the interior of C+
x ), and the same for reversed order.

Proof: Only one of the assertions needs to be proven (as it would automati-
cally imply the other). If y ∈ τC+

x , then there exist points a, b ∈ C+
x such that

x � a � y � b, i.e., y ∈ I(a, b). Hence τC+
x = int C+

x . �
The two lemmas that follow are intuitively clear, and often useful:

Lemma 4.5.5 The family of open order intervals

{I(x, y)|x, y ∈ U, x � y, U is a D-set}

is a base for the order topology.
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Proof: Let I1, I2 be two such order intervals with I1 ∩ I2 �= ∅. By Proposition
4.2.16, I1 ∩ I2 is a D-set. Let p ∈ I1 ∩ I2. By Theorem 4.2.9, there exists a
point q ∈ I1 ∩ I2 such that p � q. Then I(p, q) ∈ I1 ∩ I2. �

Lemma 4.5.6 An open subset U of an ordered space M is a D-set iff it fulfils
the following conditions:

i) U is order-convex.

ii) If x, z ∈ U with x � z and y ∈ I(x, z) then every light ray ly intersects
βI[x, z] in two points u, v with u <l y and y <l v.

iii) If a, b ∈ U and λ(a, b) then the ray la,b is unique.

Proof: If U is a D-set, then the above conditions are satisfied by definition.
Conversely, we have to verify that the above conditions imply the properties
a)–f) of Def. 4.2.1.

a) Let x, y ∈ U . Then, by the definition of order-convexity (see Def. 4.2.1.a),
I[x, y]⊂U .

b) Let l∩U �= ∅. Suppose that l∩U has a maximum, say b. As U is open,
b is an interior point of U . Therefore there exists a D-set Vb such that
b ∈ Vb ⊂U , and therefore b is a maximum for l∩Vb, which contradicts the
defining Condition 4.2.1.b) of D-sets. By the same argument, l∩U cannot
have a minimum.

c) This follows immediately from condition ii).

d) Let a, b ∈ βC+
x with a < b. Then there exists an ascending l-polygon

P (c0, c1, . . . cn) such that adjacent ci lie in a D-set, and x = c0, b = cn

and a = ck for some k, with 0 < k < n. We shall denote lci,ci+1 by li,i+1.
If l0,1 is different from l1,2 and V is a D-set containing c1, then there
exist points p ∈ l0,1 ∩V and q ∈ l1,2 ∩V . Since c1 ∈ βC+

p , it follows
from Lemma 4.2.18 that q ∈ τC+

p ⊂ τC+
x . From q <l c2 it then follows

that c2 ∈ τC+
p ⊂ τC+

x , which contradicts our assumption. Therefore we
must have l1,2 = l0,1 and c2 ∈ βC+

x . Let now l0,1 = · · · = li,i+1 and
c1, . . . , ci+1 ∈ βC+

x . If li+1,i+2 �= li,i+1 then ci+2 ∈ τC+
i and therefore

b ∈ τC+
x . It follows that li,i+1 = li+1,i+2. Therefore, by induction, all

ci ∈ βC+
x . Since the choice of the ci is arbitrary except for the condition

that adjacent ci lie in a D-set, we conclude that all points of la,b which
lie between a and b belong to βC+

x .

e) This is the same as condition iii).

f) This holds because every point of M lies in a D-set. �

Remark 4.5.7 The order topology introduced above clearly coincides with
the standard topology on R4 in Minkowski space, and is therefore strictly
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coarser than the fine topology on Minkowski space introduced by Zeeman
[133]. By itself, the order topology does not imply a “causal” or a linear
structure on M .

4.6 Regularity and Complete Regularity

In this section we shall establish that ordered spaces have the functional sepa-
ration property of Urysohn’s lemma. We begin with a remark on terminology.

Remark 4.6.1 There is no agreement in the literature, even at the textbook
level, on the use of the terms regular, completely regular and Tychonoff. Our
use of these terms will conform with that of Willard [130] and Kelley [57]. That
is, (i) a regular space will be one in which a point and a closed set disjoint
from it can be separated by disjoint open sets; (ii) a completely regular space
will be one in which a point and a closed set disjoint from it can be separated
by a continuous real-valued function; (iii) a Tychonoff space will be one which
is completely regular, and in which one-point sets are closed.7

Theorem 4.6.2 (Complete regularity) Let M be an ordered space, b ∈ M
and A a closed subset of M such that b /∈ A. Then there exists a continuous
function f : M → [0, 1] such that f(x) = 0 and f(A) = 1.

Proof: The proof is exactly the same as that of Urysohn’s lemma, except
that, instead of normality, one uses Lemma 4.2.10 to obtain a family of open
sets with the required nesting property.

In the following, I will denote an open D-interval I(., .), and Ī its closure
I[., .]. Next, let P = Q∩ [0, 1], and let an enumeration p0, p1, . . . pn, . . . of P be
given such that p0 = 0 and p1 = 1. Set Pn = {p0, . . . pn}.

Since b ∈ M \ A and M \ A is open, there exists an open D-interval I1

such that b ∈ I1 ⊂M \ A. By Lemma 4.2.10, there exist points x, y ∈ I1 such
that x � b � y, i.e., b ∈ I(x, y)⊂ I[x, y]⊂ I1. Set I0 = I(x, y).

Suppose that, for r ∈ Pn, D-intervals Ir that have the property

r < s ⇒ Īr ⊂ Is for r, s ∈ Pn (4.1)

have been defined. We shall define a D-interval Ir for r = pn+1 such that the
property (4.1) holds for r, s ∈ Pn+1.

Since Pn contains 0 and 1 and 0 < pn+1 < 1, the number pn+1 partitions
Pn into two disjoint subsets L and R such that r ∈ L ⇒ r < pn+1, and
r ∈ R ⇒ r > pn+1. Since Pn is finite, L has a largest member w and R a
smallest member u, and

w < pn+1 < u .

7 Some authors (such as Munkres, [77]) include T1-separation as an integral part
of the definition of regular and completely regular spaces. Yet other conventions
are used in the reference handbook [101].
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The D-intervals Iu and Iw are already defined. Let u1, u2, w1, w2 ∈ I1 such
that Iu = I(u1, u2) and Iw = I(w1, w2). Then

u1 � w1 � w2 � u2 .

By Lemma 4.2.10, there exist v1, v2 ∈ I1 such that

u1 � v1 � w1 � w2 � v2 � u2 .

Then Īv ⊂ Iu and Īw ⊂ Iv.
The above procedure defines, recursively, a set of D-intervals Ir, indexed

by r ∈ P, that have the properties

1. b ∈ I0;
2. r < s → Īr ⊂ Is ∀ r, s ∈ P;
3. I1 ∩A = ∅.

Define now the function

f(x) =

{
1, if x /∈ any Ur;

inf {r|x ∈ Ur}, otherwise.
(4.2)

Clearly, f(b) = 0 and f(A) = 1. The function f(x) is an Urysohn function,
and the proof of its continuity is identical with that in the proof of Urysohn’s
lemma. See [130] or [77]. �

Since one-point sets are closed in M , it follows immediately that

Corollary 4.6.3 The ordered space M is a Tychonoff space.8 �

These results will be exploited in Chap. 6.

4.7 Order Equivalence

Let M,M ′ be spaces fulfilling the order, identification and cone Axioms 3.1.2,
3.1.12 and 3.2.8. A map f : M → M ′ will be called an order equivalence iff

1. f is bijective.

2. Under f , the image of a light ray in M is a light ray in M ′.

3. a, b ∈ M,a <ll b implies that f(a) <ll f(b) in M ′.

4. If l1, l2 are light rays in M , then f(l1 ∩ l2) = f(l1)∩ f(l2) whenever l1 and
l2 intersect in M .

8 It is a standard result in point-set topology that every locally compact Hausdorff
space is a Tychonoff space. See, for example, [130]. However, an ordered space M
need not be locally compact.
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5. If D⊂M is a D-set, then so is f(D) = D′⊂M ′.

Order equivalence is clearly an equivalence. It would be tempting to re-
gard two order-equivalent spaces as essentially identical, but, as we shall see
in Sect. 8.4, the order structures of two order-equivalent spaces may be differ-
entially inequivalent. However, different order structures may give rise to the
same topology, and metrically distinct spaces may be order equivalent:

Examples 4.7.1

1. The de Sitter space in two dimensions is a hyperboloid of one sheet, and is
homeomorphic with the cylinder S1 × R. Light rays in the de Sitter space
are the (two) families of generators of the hyperboloid. These are straight
lines, and a generator from one family intersects a generator from the other
family once, and only once.
We give an order structure to S1 × R as follows: Imagine the cylinder to
be placed vertically, and define the light rays to be curves that make an
angle of π/4 with the horizontal circular sections of the cylinder. There are
two light rays through any point of S1 × R, and these two rays intersect
infinitely many times. The ordered cylinder is not order-equivalent to the
de Sitter space in two dimensions.

2. The punctured plane is homeomorphic with the plane from which a closed
circular disk with centre at the origin has been excised. Now take two
copies of the two-dimensional Minkowski space, excise the origin from the
first and a closed circular disk around the origin from the second. Excising
a point cuts exactly two light rays into two light rays each; excising a
disk does it to infinitely many light rays. This the two spaces cannot be
order-equivalent.

3. Two-dimensional Minkowski space M2 and the two-dimensional wedge W
defined by |x0| < x1 are homeomorphic and order equivalent. To see this,
furnish Minkowski space with the light-cone coordinates x± defined by
x± = x0 ± x1, and set w± = exp x±. This map sends light rays to light
rays and D-sets to D-sets.
In physics the spaces M2 and W are regarded as different because they are
not isometric.
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Homogeneity Properties

Homogeneity properties of D-sets give rise to strong homogeneity properties
on i) light rays, ii) intersections of boundaries of backward and forward cones,
and iii) D-intervals. We shall study the first two of these properties systemat-
ically in this chapter. The main strategy is to study the property in question
in a D-set, and then try to extend it beyond the given D-set. The attempt to
do so reveals a number of new features, and we shall discuss them in detail.

These methods are not powerful enough to establish the corresponding
homogeneity property of D-intervals themselves, and an additional tool is
needed. Although the result is valid for ordered spaces as defined earlier, we
have not been able to develop this tool (the existence of timelike curves) for
spaces that are not complete. The completion of ordered spaces will be studied
in Chap. 6, and its consequences elaborated in Chap. 8.

5.1 Light Rays and D-sets

We begin with the study of homogeneity properties of light ray segments in
D-sets by means of natural maps mediated by (other) light rays. We first
establish a useful auxiliary result on the topology of a light ray.

Proposition 5.1.1 The subspace topology on l induced by the order topology
of M is the standard order topology on l.

Proof: By definition, the subspace topology on l has, for a base, the inter-
sections of l with the open order intervals I(x, y) that are subsets of D-sets.
Consider a closed order interval I[x, y] that intersects l. The intersection ei-
ther lies wholly on the boundary of I[x, y], or meets it at exactly two points.
The intersection of l with the open order interval I(x, y) is therefore an open
light-ray segment. The family of these open segments is a base for the standard
order topology on l. �

H.-J. Borchers and R.N. Sen: Mathematical Implications of Einstein–Weyl Causality,
Lect. Notes Phys. 709, 51–65 (2006)
DOI 10.1007/3-540-37681-X 5 c© Springer-Verlag Berlin Heidelberg 2006
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5.1.1 Homeomorphism of Light Ray Segments

A number of useful results follow rather easily from Proposition 5.1.1. We
begin with a definition, and a result on natural maps of light-ray segments in
D-sets (Fig. 5.1).
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Fig. 5.1. The Standard Maps � and σ

Definition 5.1.2 Let U be a D-set, x, y ∈ U , y � x and lx 
 x. Set

lx ∩ βC−
y = {p} .

Let ly 
 y, ly �= lp,y, and set

ly ∩ βC+
x = {q} .

Let now

r ∈ lx, x <l r <l p ;
s ∈ ly, q <l s <l y .

Define the maps
� : lx[x, p] → ly

and
σ : ly[q, y] → lx

by
�(r) = ly ∩ βC+

r (5.1)

and
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σ(s) = lx ∩ βC−
s (5.2)

respectively. These maps are well-defined, since the right-hand sides of (5.1)
and (5.2) are unique points. �

Proposition 5.1.3 The maps � and σ defined by (5.1) and (5.2) are a) order-
preserving, and b) bijective; furthermore, c) σ = �−1 and � = σ−1.

Proof:

a) Consider �. The relation r <l r′ implies C+
r′ ⊂ C+

r , and therefore

ly[�(r), y] ⊃ ly[�(r′), y] ,

which implies �(r) <l �(r′). Similarly for σ.

b) Let r, r′ ∈ lx[x, p], r <ll r′. Then, by a) above, �(r) <l �(r′). Suppose that
�(r) = �(r′) = t (Fig. 5.2). The rays lr,t and lr′,t both lie on βC−t , i.e.,
r, r′ ∈ βC−t . But as λ(r, r′), it follows from the convexity axiom that lr,r′

lies on βC−t and passes through t, which contradicts the construction.
Therefore �(r) �= �(r′). Similarly s �= s′⇒σ(s) �= σ(s′).

c) From Lemma 4.2.12, it follows that every r ∈ lx[x, p] has a unique σ-image
s ∈ ly[q, y], and vice-versa. Since, in a D-set, two points can be joined by
at most one light ray (Def. 4.2.1.e), it follows that �(r) = s ⇔ σ(s) = r.

�

These bijective maps are actually homeomorphisms:

Proposition 5.1.4 Let U be a D-set, x, y ∈ U , x � y and lx 
 x. Set
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lx ∩ βC−y = {p} .

Let ly 
 y, ly �= lp,y and set

ly ∩ βC+
x = {q} .

Then the segments lx[x, p] and ly[q, y] are homeomorphic.

We shall denote this as follows: lx[x, p] hom= ly[q, y].

Proof: Follows from the basic fact that a bijection of a totally ordered set
which is order-preserving in both directions is a homeomorphism in the topol-
ogy defined by the total order. �

We shall call the maps � and σ defined above standard maps.
From now on, we shall assume a little bit more; we want to exclude the

“two-dimensional” case, for which the results that follow will not hold:

Assumption 5.1.5 There are at least three distinct light rays through each
point of U .

From here on, Assumption 5.1.5 will be deemed to hold unless the contrary
is explicitly stated. When it holds, there are enough natural maps in a D-set
to prove that any two light-ray segments (in a D-set) are homeomorphic to
each other. We break up the proof into three propositions.

Proposition 5.1.6 Let U be a D-set, x, y ∈ U and x � y. Let l1x, l2x, l3x
be three distinct light rays through x, which are intersected, respectively, by
the rays l1y, l2y and l3y through y. Let the points of intersection be p1, p2

and p3 respectively (See Fig. 5.3). Then p1, p2 and p3 are distinct, and the
six closed segments l1x[x, p1], l2x[x, p2], l3x[x, p3], l1y[p1, y], l2y[p2, y], l3y[p3, y] are
homeomorphic to each other.

Proof: The fact that p1, p2 and p3 are distinct is trivial. Applying Propo-
sition 5.1.4 repeatedly, we find that l2y[p2, y] hom= l1x[x, p1] hom= l3y[p3, y] hom=

l2x[x, p2] hom= l1y[p1, y] hom= l3x[x, p3]. �

If we call the segments lx[x, p] and ly[p, y] boundary segments of the order
interval I[x, y] ⊂ U , the above result can be paraphrased as follows: In a
D-set, any two boundary segments of an order interval are homeomorphic to
each other. The same is true for the open segments obtained by deleting the
end-points.

Observe that the argument fails if there are only two light rays through
each point of M ; there are not enough natural maps. However, in this case
our main goal, the differential structure – when it exists – is attained without
much effort, as we shall see later. Anticipating future results, this case will be
called the two-dimensional case.
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Fig. 5.3. Proving Proposition 5.1.6

Our next result establishes that, in an l-connected D-set, a closed light
ray segment is homeomorphic to any closed subsegment of it.

Proposition 5.1.7 Let U be a D-set, x ∈ U and lx a light ray through x. Let
p′, p ∈ lx ∩ U such that x <ll p′ <ll p. Then

lx[x, p′] hom= lx[x, p] hom= lx[p′, p] .

Proof: Let y ∈ βC+
p ∩ U, y /∈ lx,p. Then y � x and I[x, y] ⊂ U . Let

p, q ∈ βC+
x ∩βC−y , p �= q. Finally, let {q′} = βC+

p′∩lq,y, and write (see Fig. 5.4)
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l′x = lx,q, ly = lp,y, ly′ = lq,y and lp′ = lp′,q′ . Apply Proposition 5.1.6 repeat-
edly, as follows:

1. to I[x, y] to obtain lx[x, p] hom= ly[p, y];

2. to I[p′, y] to obtain lx[p′, p] hom= ly[p, y] hom= lp′ [p′, q′];

3. to I[x, q′] to obtain lx[x, p′] hom= lp′ [p′, q′].

The required result follows from the above. �

Next, we extend the above result to l-polygons in a D-set:

Proposition 5.1.8 Let U be a D-set, and let P (x0, x1, . . . , xn) be an l-
polygon lying wholly in U . Then the light-ray segments

l[xi, xi+1], i = 0, 1, . . . , n − 1

are homeomorphic to each other.

Proof: By induction. Suppose that the segments l[xj , xj+1] are homeomorphic
to each other for j = 0, 1, . . . , k, k < n − 1. We shall prove that the segment
l[xk+1, xk+2] is homeomorphic to the segment l[xk, xk+1].

The three points xk, xk+1, xk+2 must satisfy one of the following condi-
tions:

1. xk <ll xk+1 <ll xk+2 (or the same, with order reversed); or

2. xk, xk+2 ∈ βC−xk+1
(or the same, with order reversed).

If 1) holds, then I[xk, xk+2] ⊂ U . Choose a point p ∈ βC+
xk

∩ βC−xk+2
.

Proposition 5.1.6 applied to the closed 4-gon P (xk, xk+1, xk+2, p, xk), which
lies on βI[xk, xk+2], gives the desired result (Fig. 5.5(a)).

If 2) holds, then there exist points z ∈ lxk,xk+1 ∩ U such that xk+1 <ll z
(Fig. 5.5(b)). Then z � xk+2 and I[xk+2, z] ⊂ U . From Proposition 5.1.6,
l[xk+1, z] hom= l[xk+2, xk+1], and from Proposition 5.1.7, l[xk+1, z] hom= l[xk, xk+1],
from which it follows that l[xk, xk+1] hom= l[xk+2, xk+1].

This establishes the inductive step. The proof of the initial step (j = 0, 1)
is identical with the above. �

Our final result in this direction is the following:

Theorem 5.1.9 Any two closed light-ray segments in an l-connected D-set
U are homeomorphic to each other.

Proof: Let l[x0, x1] ⊂ U and l[y0, y1] ⊂ U be two light ray segments. If they
intersect, choose a point p on βC−y0

∩ U such that p �= y0 and p �∈ l[x0, x1]

(Fig. 5.6). Then I[p, y1] ⊂ U and therefore, by Proposition 5.1.6, l[p, y0] hom=
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Fig. 5.5. Proving Proposition 5.1.8
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Fig. 5.6. A step in the proof of Theorem 5.1.9

l[y0, y1]. It remains to prove that two non-intersecting segments l[x0, x1] and
l[y0, y1] are homeomorphic.

Since x1, y0 ∈ U , there exists an l-polygon P (x1, a1, . . . , an, y0) lying
wholly in U . We may, without loss of generality, assume that the seg-
ments l[x0, x1] and l[y0, y1] do not form part of P (x1, a1, . . . , an, y0). Then
P (x0, x1, a1, . . . an, y0, y1) is an l-polygon lying wholly in U . The result now
follows from Proposition 5.1.8. �

Remark 5.1.10 Since M does not have boundaries (every point of M lies in
a D-set), the result proven above for closed light ray segments holds also for
open segments. The proof is straightforward, and we omit the details.

Clearly, Theorem 5.1.9 can be extended outside the D-set U if there is a
D-set V which overlaps U and covers a part of l that is not inside U . Our next
step will therefore be to study the conditions under which such extensions are
possible. It will be seen that care has to be exercised in dealing with spaces that
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are not complete.1 We begin by recapitulating a few definitions and results
from point-set topology in the context of ordered spaces, and providing a few
examples.

5.2 Topological Preliminaries

We first define the notion of an overlapping cover of a light ray by D-sets.

Definition 5.2.1 Let M be an ordered space,2 l a light ray in M , and U =
{Uα|α ∈ A} a covering of l by D-sets. Here A is some indexing set. We say
that U is an overlapping cover of l if, for any pair of points x, y ∈ l, x <ll y,
there exist points x = x0, x1, . . . xn = y on l, xi <ll xi+1, i = 0, 1, . . . n− 1 and
D-sets Uk ∈ U such that l[xk, xk+1] ⊂ Uk. �

Next, we recall the following definitions:

1. Let X be a topological space. A separation (or disconnection) of X is a
pair of nonempty open sets U and V such that U ∩V = ∅ and U ∪V = X.
If there exists no separation of X, then X is said to be connected.

2. A topological space is called totally disconnected if the only connected
subsets are the one-point subsets.

3. The topology of X is called discrete if every subset of X is open.

Let us now consider the two examples that follow in some detail:

Example 5.2.2 Let M = Q2 and let the light rays be the lines x−y = const
and x + y = const, x, y ∈ Q. Define the order topology T using as base the
family of order intervals3

B = {I(p, q); p, q ∈ M,p � q} . (5.3)

This topology endows M with the following properties:

1. M is totally disconnected. For let a, b ∈ M,a �= b. Let (ax, ay), (bx, by) be
the coordinates of a and b respectively. Suppose that ax �= bx. Choose an
irrational number ξ lying between ax and bx, and consider the sets

MA =
⋃

p�q
px>ξ

I(p, q) ,

MB =
⋃

p�q
qx<ξ

I(p, q) .
(5.4)

1 The word complete is used in this chapter purely as a guide to intuition, as it
would be used in a metric or uniform space. We shall discuss the uniformizability
and completion of ordered spaces in Chap. 6.

2 Recall that M is assumed to be l-connected.
3 In n dimensions, n > 2, one has to replace Q by a real algebraic extension F that

is closed under the taking of square roots.
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Then MA and MB form a separation of M . Next, let ax = bx. Then ay �= by.
Choose an irrational η lying between ay and by, and define

ML = {
⋃

all I(p,q)

I(p, q)|a ∈ I(p, q) ⇒ ax < η} ,

MR = {
⋃

all I(p,q)

I(p, q)|a ∈ I(p, q) ⇒ ax > η} .

(5.5)

Then ML and MR form a separation of M . That is, no two distinct points
of M lie in a connected subset, i.e., M is totally disconnected.

2. M is not discrete. For, the open sets in M are arbitrary unions of finite
intersections of the basis elements defined by (5.3). By definition, if x ∈ B1,
x ∈ B2, then there exists a basis element, i.e., a nonempty order interval
B3 such that x ∈ B3 ⊂ B1 ∩ B2. That is, if the intersection of a finite
number of basis elements is nonempty, then it contains a nonempty order
interval. Therefore one-point sets cannot be open in M .

3. Every light ray in M has an overlapping cover,4 which can be constructed
as follows. Let l be a light ray, and l1, l2 two light rays that are parallel
to l, and are different from l and from each other. Then l lies in the strip
bounded by the parallel lines l1 and l2 in Q2. We may assume that l2 lies
above l1, without loss of generality. Let now a ∈ l1 and b ∈ l2. The family
of open order intervals {I(a, b)|a ∈ l1, b ∈ l2} is an overlapping cover of l.
(Recall that I(a, b) = ∅ if a �� b, a �= b.)

4. Not every cover of l has an overlapping subcover. Examples are covers
chosen from the separations M = MA ∪ MB and M = ML ∪ MR defined
by (5.4) and (5.5) respectively.5

Example 5.2.3 Let W (the double wedge) be the complement of the dotted
cone bounded by the straight lines y = 2x − π and y = −2x + 3π in the
Minkowski plane M = R2, as shown in Fig. 5.7. These two lines intersect at
the point p = (π, π). Any D-set in M that contains the point p contains points
of W , as well as points of M \ W . Let X = W ∩ Q2. Define light rays in X
to be the restrictions of light rays in M to X. Then X becomes an ordered
space.

X consists of two disjoint pieces L and R that lie to the left and right,
respectively, of W . Although disjoint, the pieces L and R are connected by
the two light rays l1 and l2, shown by dashed lines in the figure. l1 is the line
y = x, and l2 the line y = −x + 2π. That is, X is l-connected, but the rays
l1, l2 do not have overlapping covers.

4 It is worth emphasizing that the existence of overlapping covers (of light rays) is
not a universal property. Example 5.2.3 that follows provides a counterexample.

5 The significance of the last observation lies in the fact that if every cover of l had
an overlapping subcover, then l would have been homeomorphic to R; this is a
standard theorem of point-set topology.
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In X, owing to the excision of the point p, the line l1 splits into two distinct
light rays, each of which has an overlapping cover, and the same is true of the
line l2.

5.3 Segments of Light Rays

In this section we shall show how, in the presence of overlapping covers, Propo-
sition 5.1.9 may be extended to the entire space. We shall also prove analogous
results for spacelike hyperspheres defined by (5.6) below. Results for order in-
tervals that lie in D-sets require further preparation, and will be dealt with
in the following section.

We shall describe these results by the term homogeneity properties of the
ordered space M .

It is worth noting that the results of this section and the next depend only
on the existence of overlapping covers for light rays; it does not matter if, like
Q2 in the topology T , the space is totally disconnected.

Our first result is the following:

Proposition 5.3.1 Let l be a light ray in the ordered space M . If l has an
overlapping cover U , and Ux, Uy ∈ U , then any closed segment of l in Ux is
homeomorphic to any closed segment of l in Uy.

Proof: If Ux ∩ Uy �= ∅, then there exists a closed segment l[a, b] of l which is
contained in both Ux and Uy. By Theorem 5.1.9, l[a, b] is homeomorphic to
every closed segment of l contained in Ux, as well as to every closed segment
contained in Uy.

If x ∈ l∩Ux, y ∈ l∩Uy, x �= y and Ux ∩Uy = ∅ then we may, without loss
of generality, assume that x <l y. Since l has an overlapping cover, there exist
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points x = x0, x1, . . . xn−1, xn = y on l and D-sets Dx = D0, D1, . . . Dn =
Dy such that l[xk, xk+1] ⊂ Uk. Since Dk ∩ Dk+1 �= ∅, the result follows by
induction. �

It is worth recalling that the proof of Proposition 5.1.9 is based, ultimately,
upon the topological theorem that a bijective order-preserving map between
two totally ordered sets is a homeomorphism (in their order topologies).

The general result follows quickly from the above:

Theorem 5.3.2 (First homogeneity property: l[a, b]) Let M be an or-
dered space in which every light ray has an overlapping cover. Let U1, U2 ⊂ M
be D-sets and l1[a, b] ⊂ U1, l2[p, q] ⊂ U2 be nonempty closed light ray seg-
ments. Then

l1[a, b] hom= l2[p, q] .

Proof: Since M is l-connected, there exists an l-polygon connecting b with
p. By assumption, every light ray has an overlapping cover, and therefore the
l-polygon P (a, b, . . . , p, q) has an overlapping cover. The result now follows
from Proposition 5.3.1. �

As remarked earlier, in an ordered space in which light rays are locally
homeomorphic with R, every light ray has an overlapping cover. This condition
may fail only when light rays do not have the local structure of the linear
continuum, as in Example 5.2.3. When it fails, there is no assurance that the
first homogeneity Property 5.3.2 will hold. We wish to exclude such situations,
and do so by the following explicit assumption:

Assumption 5.3.3 (Overlapping cover assumption)

The ordered space M will be assumed to be such that every light ray has an
overlapping cover.

5.4 Spacelike Hyperspheres

We begin with a remark on terminology and notations. In a Minkowski space,
if p � q, then the intersections of the boundaries

S(p, q) = βC+
p ∩ βC−q . (5.6)

are spacelike hyperspheres. By abuse of language, we shall use the same term
to denote the intersections (5.6) of boundaries of forward and backward cones
inside D-sets in an arbitrary ordered space M .

We shall establish that spacelike hyperspheres defined by (5.6) are home-
omorphic to each other. As with homeomorphisms of light ray segments, the
proof will be broken up into several steps. We begin with the following tech-
nical lemma:
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Lemma 5.4.1 Let {Uα}, α ∈ A be an indexed family of D-sets. Let Z =
∩{α∈A}Uα. Then int Z is a D-set.

Proof: As an intersection of D-sets, Z may fail to be a D-set only because
the infinite intersection introduces boundary points. These are eliminated by
taking the interior. Recall that the empty set is trivially a D-set. �

Proposition 5.4.2 Let U be a D-set, a, b, c ∈ U, a � b � c. Then

S(a, b) hom= S(a, c) hom= S(b, c) .

Proof: By part c) of Definition 4.2.1, the map6 π : S(a, b) → S(a, c) mediated
by light rays through a is bijective (Fig. 5.8). We have to prove that π and
π−1 are continuous.
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Fig. 5.8. Proving that S(a, b) and S(a, c) are homeomorphic

6 Observe that this map is a stereographic projection.
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We shall prove continuity in its local form: the map π : S(a, b) → S(a, c)
is continuous at the point s0 ∈ S(a, b) if for each neighbourhood WS of π(s0),
there is a neighbourhood VS of s0 such that π(VS) ⊂ WS . We shall fix a
neighbourhood WS of π(s) and determine a neighbourhood VS of π(s0) that
meets the required conditions.

Choose a point s0 ∈ S(a, b) and let s = π(s0). Let x, y ∈ U be points such
that s ∈ I(x, y). Then I(x, y) ∩ S(a, c) is an open subset of S containing the
point s (see Fig. 5.8).

Let p ∈ I(x, y) ∩ S(a, c). Form the sets

T± =

{⋂
p

(C±p ∩ U)|p ∈ I(x, y) ∩ S(a, c)

}
. (5.7)

The sets T± are nonempty, because there exist points α, γ ∈ U such that

α � a � c � γ ,

and α ∈ T−, γ ∈ T+ by construction. Now

u ∈ T− ⇒ u � p ∀ p ∈ I(x, y) ∩ S(a, c) ,

v ∈ T+ ⇒ v � p ∀ p ∈ I(x, y) ∩ S(a, c)

and therefore

u ∈ T−, v ∈ T+ ⇒ I(u, v) ⊃ I(x, y) ∩ S(a, c) . (5.8)

Define

W = int

{⋂
u,v

I(u, v)|u ∈ T−, v ∈ T+

}
. (5.9)

Owing to (5.8), W is nonempty. Therefore, by Lemma 5.4.1, W is open.
Clearly,

W ∩ S(a, c) ⊃ I(x, y) ∩ S(a, c) . (5.10)

But, as x ∈ T−, y ∈ T+, the interval I(x, y) is one of the I(u, v) on the
right-hand side of (5.9), and therefore

W ∩ S(a, c) ⊂ I(x, y) ∩ S(a, c) . (5.11)

Combining (5.10) and (5.11), we have

WS = W ∩ S(a, c) = I(x, y) ∩ S(a, c) . (5.12)

Next, choose x0, y0 ∈ U such that x0 � s0 � y0 and VS = I(x0, y0)∩S(a, b) ⊂
π−1(WS). (See Fig. 5.8; for pictorial clarity, the points x0 and s0 are not
labelled in the figure, but the point s0 is marked by a black dot.) Then VS is
a neighbourhood of s0 in S(a, b), and
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π(VS) ⊂ WS ,

which proves the continuity of π. The continuity of π−1 is proven in exactly
the same manner. �

Proposition 5.4.3 Let U be a D-set, x, y ∈ U, x � y. Let

x � a � b � y ,

x � a′ � b′ � y .

Then
S(a, b) hom= S(a′, b′) .

Proof: Clearly, a, b, a′, b′ ∈ U .

1. Consider the triple x, a, y. Here a ∈ I(x, y), and therefore, from Proposition
5.4.2,

S(x, y) hom= S(a, y) . (5.13)

2. Now consider the triple a, b, y. Here b ∈ I(a, y), and therefore, again from
Proposition 5.4.2,

S(a, b) hom= S(a, y) . (5.14)

It follows from (5.13) and (5.14) that

S(a, b) hom= S(x, y) . (5.15)

Replacing a, b by a′, b′ respectively, one has

S(a′, b′) hom= S(x, y) . (5.16)

The result follows from (5.15) and (5.16). �
A D-set in not necessarily an order interval; but, since the family of open

order intervals contained in D-sets is a base for the order topology, a D-set
can be covered by open order intervals. Consequently, Proposition 5.4.3 can
be improved as follows:

Theorem 5.4.4 Let U be an l-connected D-set, a, b, a′, b′ ∈ U , a � b and
a′ � b′. Then

S(a, b) hom= S(a′, b′) .

Proof: The straightforward details are omitted. �
Our final result in this direction is the following:
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Theorem 5.4.5 (Second homogeneity property: S(a, b)) Suppose that
every light ray in M has an overlapping cover, and let U, V ⊂ M be D-sets.
Let a, b ∈ U, a � b, p, q ∈ V, p � q, so that S(a, b) ⊂ U and S(p, q) ⊂ V are
spacelike hyperspheres defined by (5.6). Then

S(a, b) hom= S(p, q) .

Proof: Let x ∈ U and y ∈ V . Since M is l-connected, there is an l-polygon
connecting x with y, and this l-polygon has an overlapping cover. We may,
without loss of generality, assume that the initial and terminal elements of this
cover are U and V respectively. The result follows by repeated application of
Theorem 5.4.4. �
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Ordered Spaces and Complete Uniformizability

The order structure on M defined in Chaps. 3 and 4 determines not just
a topology but also a family of uniformities on M , and a uniform structure
admits a notion of completeness. The completed space can carry mathematical
structures (such as differentiable or analytic structures) that cannot be carried
by ordered spaces like Q2. These structures were first elaborated in the context
of metric spaces, but ordered spaces may be uniformizable without being
metrizable. In this chapter, we shall review the completion of uniformities
determined by the order structure, define a notion of order uniformity and its
completion, and analyse the problem of extending the order to the completed
space. This will lead us to a concept which we shall call order completion (and
which will be slightly different from uniform completion), and it will be clear
from the definition that every ordered space has an order completion.

Although uniform structures are seldom used explicitly in mathematical
physics, the standard notions of uniform continuity and uniform convergence
are familiar to all. These notions suffice for an overview of the main argument,
which is given below. A fairly detailed summary of the relevant parts of the
theory of uniformities is given in Appendix A, together with references.

6.1 General Discussion and Main Results

The concept of a uniform structure or uniformity is an abstraction from the
concepts of uniform continuity and uniform convergence. Uniformities as au-
tonomous mathematical entities were first defined by André Weil [109] who,
motivated by the example of topological groups, was looking for a structure
that was intermediate between topological and metric structures. Uniform
structures are strictly weaker than metric structures, in the sense that a met-
ric induces a unique uniformity, but different metrics may induce the same
uniformity. Similarly, uniform structures are strictly stronger than topologies,
in that a uniformity induces a unique topology, but different uniformities may
induce the same topology. In the theory of uniformities, the question “when

H.-J. Borchers and R.N. Sen: Mathematical Implications of Einstein–Weyl Causality,
Lect. Notes Phys. 709, 67–94 (2006)
DOI 10.1007/3-540-37681-X 6 c© Springer-Verlag Berlin Heidelberg 2006
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is a topological space metrizable” is replaced by the question “when is a topo-
logical space uniformizable”. Like metric spaces, uniform spaces provide a
framework for both geometry and functional analysis, and much of the inter-
est in uniform spaces derives from the fact that this framework is less stringent
than the one provided by metric spaces.

6.1.1 Uniformizability

As stated in the previous paragraph, a uniformity on X induces a unique
topology on X.1 This topology is called the topology of the uniformity; if
only one uniformity is being considered, it is called the uniform topology.

Definition 6.1.1 (Uniformizability)

A topological space (X, T ) is called uniformizable if there is a uniformity E
on X that induces the topology T on it.

It is a standard result in the theory of uniformities that a topological space
is uniformizable if and only if it is Tychonoff [130]. Therefore, in view of our
earlier result that every ordered space is Tychonoff (Corollary 4.6.3), we have
the fundamental theorem on the uniformizability of ordered spaces:

Theorem 6.1.2 (Uniformizability theorem for ordered spaces)

Every ordered space is uniformizable. �
Terminology 6.1.3 In what follows, we shall adopt the convention that,
in the context of ordered spaces, the term uniformity will always mean one
that has the order topology as its uniform topology. The discrete and trivial
uniformities (Appendix A, Examples A.1.6), for example, are not of interest
to us.

6.1.2 Completeness and Complete Uniformizability

The notion of completeness for uniform spaces is defined via Cauchy nets
or Cauchy filters.2 A uniform space is called complete if (and only if) every
Cauchy filter in it converges. A uniform space X that is not complete may be
completed by adjoining “ideal points” to make every Cauchy filter converge;
the completion is the space of Cauchy nets or filters in the original space. The
completed space X̃ has a uniform structure, and X is densely, and uniformly,
embedded in X̃ (see Appendix A).

1 The uniform topology is defined explicitly, and necessary and sufficient conditions
for it to be Hausdorff stated, in Appendix A, Sect. A.3. The main results on the
uniformizability of topological spaces and (for comparison) the metrizability of
uniform spaces are given in Sect. A.5.

2 In spaces satisfying the first axiom of countability, Cauchy sequences would suffice
to define the notion of completeness.
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A topological space is called completely uniformizable if there exists a uni-
formity in which the space is complete, and which induces its topology. It
is natural to ask when a topological space is completely uniformizable. The
answer, which was provided by Shirota in 1952 [98], involves a set-theoretic
subtlety which is briefly discussed in Appendix A. In the framework for mathe-
matics provided by the Zermelo-Fraenkel axioms for set theory plus the axiom
of choice,3 this subtlety becomes irrelevant, and Shirota’s theorem reduces to
the following:

Theorem 6.1.4 A topological space X is completely uniformizable iff

a) X is a Tychonoff space.

b) X is a closed subspace of a product of real lines.

Since the uniform completion of an ordered space is completely uniformizable
by definition, we have the following result:

Theorem 6.1.5 The uniform completion of an ordered space is, in its uni-
form topology, a closed subspace of a product of real lines.

This theorem may justly be regarded as the key to further mathematical
structures on order complete spaces.

In view of Theorems 6.1.2 and 6.1.5, interest shifts naturally to the follow-
ing question: Let M̃ be a uniform completion of M . Can the order structure
M be extended to M̃? This question, or rather an appropriate modification
of it, will occupy us for the rest of this chapter, following the definition of the
order uniformity on D-sets.

6.2 Order and Uniformization

If a uniformizable space is compact Hausdorff then, according to Theorem
A.3.4, its uniformization is unique. This may no longer be true if the space
is not compact Hausdorff. An ordered space M is always Hausdorff but never
compact, and may admit of inequivalent uniformizations. However, this turns
out not to be a problem. We begin with the definition of the order uniformity
on D-sets.

6.2.1 The Order Uniformity on D-sets

We shall define the order uniformity on D-sets as a diagonal uniformity
(Def. A.1.5), via a filter base.

3 Denoted ZFC; see footnote 6 on p. 165
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Lemma 6.2.1 Let M be an ordered space, D ⊂ M a D-set in it, and let
{Dα|α ∈ A} be a D-base for the relativized order topology on D. Denote by A
the family of all D-bases for D, choose a particular A ∈ A, and define

EA =
⋃

α∈A

Dα × Dα. (6.1)

Then the family {EA|A ∈ A} is a base for a filter ED on U × U .

Proof: We need to prove that if E1, E2 ∈ ED, E1 ∩E2 �= ∅, then there exists
E3 ∈ ED such that E3 ⊂ E1 ∩ E2. This is an immediate consequence of the
corresponding result on bases for topologies. �

The result we seek is the following:

Theorem 6.2.2 The filter ED of Def. 6.2.1 defines a diagonal uniformity
on D.

Proof: We have to verify the conditions a)–c) of Def. A.1.5.
Condition a), if E ∈ ED then Δ ⊂ E, follows immediately from the defi-

nition. Condition b), if E ∈ ED then there exists an entourage F such that
F ∈ E−1, follows from the fact that every entourage E is a superset of some
symmetric entourage F , which is a subset of E−1 if it is a subset of E. Con-
dition c) states that for any entourage E, there exists an entourage F such
that F ◦ F ⊂ E. This is true because F = D × D is itself an entourage. �

The following result is easy to prove, but fundamental:

Theorem 6.2.3 The order uniformity ED on D is Hausdorff.

Proof: It is enough to prove that, for any two distinct points x, y ∈ D, there
exists an entourage E that does not contain the pair (x, y). Fix x and y, x �= y.
Since one-point sets are closed in the order topology, there exists a D-cover
D(−) of U \ {x}. Let Dx be a D-set such that x ∈ Dx but y �∈ Dx. Then
D = D(−) ∪ {Dx} is a D-cover of M such that Dα ∈ D implies that Dα does
not contain both x and y. Then the entourage E = ∪(Dα × Dα), where the
union is over all Dα ∈ D, does not contain the pair (x, y). �

6.2.1.1 The Topology of the Order Uniformity on D

Recall that for x ∈ X and a relation R on X, the set R[x] is defined as

R[x] = {y | (x, y) ∈ R} .

It follows that if R is an entourage, then R[x] contains a D-set Dα
x 
 x. Let

K be the family of relations on U . Then the family of sets

{R[x] |x fixed, R ∈ K},

which is a system of neighbourhoods of x in the uniform topology, is also a
system of neighbourhoods of x in the order topology. That is:
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Theorem 6.2.4 The topology of the order uniformity ED on D is the same
as the order topology on D. �

6.2.1.2 The Relativization Lemma for the Order Uniformity

Lemma 6.2.5 Let M be an ordered space and D1, D2 ⊂ M be D-sets such
that D3 = D1 ∩D2 is nonempty. Then the relativizations of the order unifor-
mities on D1, D2 to D3 are identical with the order uniformity on D3.

Proof: Follows immediately from Proposition 4.2.16, which is that the inter-
section of two D-sets is a D-set. �

This lemma will be called the relativization lemma. It will be used exten-
sively in the following, often without explicit mention of the source.

6.3 Uniform Completions of Ordered Spaces

Not being compact, an ordered space will generally admit of inequivalent uni-
formizations, which in turn will lead to different (uniform) completions. From
our point of view, a completion will be relevant only if the order can be ex-
tended to the completed space. There exist nontrivial uniform completions
to which the order of M cannot be extended. A good “universal” example
is βM , the Stone-Čech compactification of a Tychonoff space M ; βM is uni-
formly complete in the pseudometric uniformity (Theorem A.8.1); according
to our definition of order, a compact space cannot be ordered.

Additionally, completions of M may result in obstructions other than com-
pactness to extending the order of M . For instance, they may introduce bound-
aries,4 and spaces with boundaries cannot be ordered in our sense. Alterna-
tively, they may fill in “missing sets” such as punctures or cuts. We illustrate
these possibilities below by simple examples of subspaces of the Minkowski
plane. In all these examples the uniformity is the metric uniformity, the met-
ric is the Euclidean metric and uniform completion coincides with the metric
completion.

Examples 6.3.1

1. X = {(x, y); x ∈ R, y > 0}. The completion X̃ of X is the half-space
X̃ = {(x; y); x ∈ R, y ≥ 0}, which is a manifold with boundary.

2. X = R2 \ B̄O, where BO is the closed unit disc with centre at O. The
completion of X is X̃ = R2 \ BO, where BO is the open unit disc with
centre at O.

4 If a differentiable manifold is not complete, its completion may be a manifold
with boundary. The open disk in R2 provides a simple example.
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3. The punctured plane X = R2 \ {O}, where O is the origin of coordinates.
The completion of X is R2.

4. The cut plane X \ {(x, y); 0 ≤ x < ∞, y = 0}. Again, the completion of X
is R2.

In cases 1) and 2), the completed space cannot be ordered; light rays do
not have end points. In cases 3) and 4), completion fills in the “missing sets”,
which are the puncture in case 3), and the cut in case 4). The order of X can
be extended to the completed space, but at the cost of joining pairs of light
rays in X into one in X̃; in case 3), there are two such pairs, namely the light
rays x = y in the first and third quadrants of X, and the rays x = −y in the
second and fourth quadrants. In case 4), every light ray x = y + a, a ≥ 0 in
X̃ joins together two light rays in X. We would like to avoid such situations.
Moreover, the concept of completion of ordered spaces should be invariant
under order equivalence transformations (Sect. 4.7).

6.4 The Concept of Order Completion

Suppose that one is given a completion (or some modification thereof) of
M that can support an order structure. One has then to extend the order
structure from M to this completion. This is a constructive procedure, and
we shall gain further insight by considering, briefly, the nuts and bolts of the
process.

In view of the way that order was defined, it would be reasonable to
regard the extension of order to the new space as a two-step process. At the
first step, one will have to complete the “old” light rays and define the new
ones. At the second step, one will have to verify that the totality of light rays
in the new space satisfies the order axioms. Recall now that these axioms
were stated in terms of light rays and their intersections, and that we have
effective control over these intersections, in the original space, only in D-sets.
It therefore makes sense to try to extend the order D-set by D-set, using
overlapping covers (Assumption 5.3.3). To do so it should suffice to have a
localized version of the notion of completion. For this it is enough to have
the order uniformity on D-sets, which was defined in Sect. 6.2.1. Under the
assumption that follows, the order uniformity is the unique uniformity on a
D-set that is compatible with its topology. The relativization Lemma 6.2.5
will be the tool that will enable us to extend the order, D-set by D-set, to the
new space.

Assumption 6.4.1 (Local precompactness assumption)

From now on (unless the contrary is stated explicitly) all ordered spaces M
will be assumed to be locally precompact. That is, the uniform subspace (D, ED)
will, by assumption, be totally bounded for every D-set D ⊂ M . Here ED is
the order uniformity on D. �
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It follows immediately from this assumption that the uniform completion
of (D, ED), which we shall denote by D̃, is compact (Theorem A.6.12). By
Theorem A.7.2, D̃ is Hausdorff. Therefore, by Theorem A.7.4, it possesses a
unique uniformity that is compatible with its topology. It is clear that the
order uniformity on D is precisely the relativization of this uniformity to D.

Let D be a D-set in M , and define

Ď = int D̃ . (6.2)

Let now {Dα|α ∈ M} be a D-cover of M , and define

M̌ =
⋃

α∈A

Ďα . (6.3)

Then Ďα ⊂ M̌ ∀ α ∈ A, and the family of subsets {Ďα|α ∈ A} is a base for
a topology on M̌ . We shall furnish M̌ with this topology. The sets Ď will be
called Ď-sets in M̌ ; the terminology will be justified later. Finally, define

M̃ =
⋃

α∈A

D̃α . (6.4)

Definition 6.4.2 (Topology on M̃)

The topology T on M̃ is defined by taking the closure of the family {D̃α}
under finite unions and arbitrary intersections as its closed sets. �
T is indeed a topology, because {D̃α|α ∈ A} covers M̃ . The sets Ďα are open
in the topology T . It is the only topology that we shall ever consider on M̃ .
Note that M̌ ⊂ int M̃ ⊂ M̃ and M̃ = cl M̌ .

Definition 6.4.3 (Order completion)

Let M be an ordered space with a locally precompact uniformity. The order
completion of M will be defined to be the space M̌ of (6.3), with the topology
defined by the family of Ď-sets (6.2) as base. �

It is clear from the Definition 6.3 that M̌ does not have boundaries. Nor
does it fill in the missing sets of M , as D-sets, by definition, “avoid” the
missing sets. In Example 3 of 6.3.1, no D-set in M includes the puncture,
and in Example 4, no D-set in M crosses the cut. In general, M̌ ⊂ int M̃ , the
equality M̌ = int M̃ holding if and only if M does not have cuts or punctures.

Notations 6.4.4

We begin with setting up some notations. In the following, D will denote a
D-set in M .
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1. We shall denote by l̃ the closure, in M̃ , of the light ray l ⊂ M , and set ľ =
l̃ ∩ M̌ . Since l is linearly ordered and satisfies the density Axiom 3.1.2(b),
its closure is locally the same as its Dedekind completion. Therefore ľ
is ordered, and is locally homeomorphic with R. We shall use the same
symbols <l and <ll to denote the orders on ľ. For x, y ∈ ľ, x <l y, we
shall denote the open and closed segments between x and y by ľ(x, y) and
ľ[x, y] respectively.

2. Let A ⊂ D. We shall denote the uniform completion of A in (D, ED) by Ã.
Then, by Theorem A.7.5, Ã is a closed subset of D̃. It is therefore a closed
subset of M̃ .

3. The sets Ď ⊂ M̌ were defined by (6.2). (We shall prove, eventually, that a
Ď-set is a D-set in M̌ .)

4. Let A be a closed subset of D. We define: Ǎ = Ã ∩ Ď. That is, if A is
closed in D, then Ǎ is closed in Ď.

5. Let U be an open subset of D. We define: Ǔ = (int Ũ) ∩ Ď. That is, if U
is open in D, then Ǔ is open in Ď. Ǔ is also the order completion of the
ordered space U . �

Upon extension of the order from M to M̌ , it will be seen that these notations
are consistent with the ones that we have been using so far.

Definition 6.4.5 (Local Cones and D-intervals)

Let M be an ordered space, a ∈ D ⊂ M where D is a D-set, and C±a the
forward and backward cones at a. We define

C±a;D = C±a ∩ D , (6.5)

and call them local cones at a. By Theorem 4.5.4, the relations

βC±a;D = ∂C±a;D ∩ D (6.6)

always hold for local cones. Define successively

C±
a;Ď

= considered as a subset of C±a;D in Ď;

C̃±
a;Ď

= the uniform completion of C±
a;Ď

;

Č±
a;Ď

= C̃±
a;Ď

∩ Ď; (6.7)

τČ±
a;Ď

= int Č±
a;Ď

. (6.8)

C̃±
a;Ď

, the uniform completion of C±
a;Ď

, has topological boundaries; the mantle
and the base of the cone. We wish to keep the mantle but excise the base, and
this is achieved by taking its intersection with Ď (see (6.7)).

Let η ∈ M̌ be a point introduced by the order completion. The order
structure of M , the topology of M̌ and the completeness of the D̃ make it
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possible to define local cones at η before light rays through η are defined, and
these definitions are given below.

Let D ⊂ M be a D-set such that η ∈ Ď. Then there exists a filter base of
closed order intervals I[rα, sα] in D that converges to η ∈ M̌ , and we define
the local cone Č+

η;Ď
as

Č+
η;Ď

=

(⋂
rα

C̃+
rα;Ď

)
∩ Ď . (6.9)

Č−
η;Ď

would then be defined as

Č−
η;Ď

=

(⋂
sα

C̃−sα;Ď

)
∩ Ď . (6.10)

Next, if x, y ∈ Č+
x;Ď

, we define

Ǐ[x, y] = Č+
x;Ď

∩ Č−
y;Ď

,

Ǐ(x, y) = τČ+
x;Ď

∩ τČ−
y;Ď

(6.11)

and call them Ď-intervals. �

The definitions of local cones and Ď-intervals given above are purely topo-
logical. For the moment, a cone mantle is available to us only locally, and only
as part of the topological boundary of a local cone. As already remarked, the
topological boundary of C̃±

x;Ď
contains the base as well as the mantle. In (6.7),

the base was excised by intersecting C̃±
a;Ď

with Ď. In the same spirit, we define

the mantle operator ∂̌ as follows:

Definition 6.4.6 (Mantle operator)

∂̌Č±
x;Ď

= (∂Č±
x;Ď

) ∩ Ď , (6.12)

where ∂ is the standard topological boundary operator. �

Finally, we extend the definition (5.6) of spacelike hyperspheres in D-sets
to their order completions Ď:

Definition 6.4.7
Š(x, y) = ∂̌Č+

x;Ď
∩ ∂̌Č−

y;Ď
. �

Observe that if x, y ∈ M , then Š(x, y) is the completion of S(x, y) in its
relative uniformity.

The notations and terminology in the Definitions (6.7)–(6.11) remain to be
justified. When this is done, the Notation 6.4.7 will automatically be justified.
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6.4.1 Notations Special to This Chapter

In the rest of this chapter, we shall use a few special notations, defined below:

1. i) Points in M will be denoted by lower-case Latin letters, excepting the
letters x, y, z.

ii) The letters x, y, z will denote points in M̌ which may or may not be
in M .

iii) Points in M̌ which are not in M will be denoted by the lower-case
Greek letters ξ, η, ζ.

2. � will denote a new light ray in M̌ , i.e., one which is not the completion
of a ray l in M .

6.5 Some Basic Results

We shall now establish some basic results concerning the objects defined
above, using the completeness of M̃ , the topology of M̌ and the order struc-
ture of M . These results will greatly facilitate the extension of order from M
to M̌ . However, we shall establish them under a restrictive assumption, which
is:

Assumption 6.5.1 (First countability assumption)

From now on, all ordered spaces M will be assumed to satisfy the first axiom
of countability, unless the contrary is stated explicitly.

The fact that sequential convergence suffices to describe the topology of a first
countable space will be fully exploited the subsequent developments.

6.5.1 Symmetry Properties

We extend the Definition 3.2.6 of the order “<” as follows:

Definition 6.5.2
1) x < y iff y ∈ Č+

x;Ď
;

2) x > y iff y ∈ Č−
x;Ď

. �

In M , the equivalence y ∈ C+
x ⇔ x ∈ C−y (3.2.5) follows immediately from

the polygon lemma, which is not yet available in M̌ . However, the result –
which is both order-theoretic and topological – can be proved by purely topo-
logical means. The proof is given in Lemmas 6.5.4 and 6.5.5. We begin with
a preliminary lemma.

Lemma 6.5.3 Let ξ ∈ Ď. Then there exist sequences {an}, {bn}, an, bn ∈
D ∀ n ∈ N+, an � an+1 and bn � bn+1 that converge to ξ from below and
from above respectively.



6.5 Some Basic Results 77

Proof: By definition, ξ is the limit of some Cauchy sequence {cn}, cn ∈
D ∀ n ∈ N+. We may assume, without loss of generality, that ci �= cj for
i �= j.

1. There exists a neighbourhood U1 ⊂ Ď of ξ such that c1 /∈ U1. Choose
a1, b1 ∈ U1 such that ξ ∈ Ǐ(a1, b1). Then {cn} is ultimately in Ǐ(a1, b1),
and the intersection {cn}∩Ǐ(a1, b1) contains a Cauchy subsequence of {cn}.
Re-label this subsequence as {cn}, starting with n = 2.

2. There exists a neighbourhood U2 ⊂ Ǐ(a1, b1) of ξ such that c2 /∈ U2. Choose
a2, b2 ∈ U2 such that ξ ∈ Ǐ(a2, b2). Then {cn} is ultimately in Ǐ(a2, b2), and
the intersection {cn} ∩ Ǐ(a2, b2) contains a Cauchy subsequence of {cn}.
Re-label this subsequence as {cn}, starting with n = 3.

3. Iterating this process, we obtain a chain of intervals

Ǐ(a1, b1) ⊃ Ǐ(a2, b2) ⊃ · · · Ǐ(an, bn) ⊃ · · ·
such that ξ ∈ ∩nǏ(an, bn). Standard arguments show that the intersection
∩nǏ(an, bn) contains no point other than ξ, and that an → ξ and bn → ξ.
The sequences {an} and {bn} are the desired ones. �

Lemma 6.5.4 Let x, y ∈ Ď. If y ∈ τČ+
x;Ď

then x ∈ τČ−
y;Ď

, and the same with
order reversed.

Proof: Let y ∈ τČ+
x;Ď

and let {an}, an � an+1 and {bn}, bn � bn+1 be

sequences in D that converge in Ď to x and y respectively. Since x �= y, they
may be separated by disjoint open subsets Ox and Oy of Ď, and {an}, {bn}
will ultimately be in Ox and Oy respectively. Since y ∈ τČ+

x;Ď
we may, without

loss of generality, assume that y ∈ Oy ⊂ τČ+
x;Ď

. Then, for m,n > N , am � bn,

so that am ∈ Č−
bn;Ď

for m,n > N . It follows from this that x ∈ τČ−
y;Ď

. Mutatis
mutandis, the same proof holds with order reversed. �
Lemma 6.5.5 Let x, y ∈ Ď. If y ∈ ∂̌Č+

x;Ď
then x ∈ ∂̌Č−

y;Ď
, and the same

with order reversed.

Proof: By contradiction. If x /∈ ∂̌Č+
y;Ď

then x ∈ τČ−
y;Ď

, so that, by Lemma

6.5.4, y ∈ τČ−
x;Ď

, which contradicts the assumption. �

Corollary 6.5.6
y /∈ Čx;Ď ⇔ x /∈ Čy;Ď .

Proof: Follows immediately from Lemmas 6.5.4 and 6.5.5: �
Notations and Terminology 6.5.7

In view of the above results, we shall use the notations x � y, y � x and
x < y, y > x, wherever appropriate, in M̌ . We shall also say that x and y
are spacelike to each other if y /∈ Čx;Ď. Once again, the terminology will be
justified upon extension of the order from M to M̌ .
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6.5.2 Separation Theorems

Next, we establish a few basic separation theorems. These are nontrivial be-
cause the order of M has not yet been extended to M̌ . The proofs involve a
subtle interplay between the order completeness and topology of M̌ , and the
order structure of M .

Lemma 6.5.8 Let D ⊂ M be a D-set, and the points r, s, t, u ∈ D such that

r � s � t � u .

Then
Ǐ[s, t] ⊂ Ǐ(r, u) .

Proof:

1. Every point in Ǐ[s, t] is defined by a Cauchy sequence lying wholly in I[s, t],
and therefore in I[r, u]. It follows that Ǐ[s, t] ⊂ Ǐ[r, u].

2. Let a ∈ βI[r, u] ⊂ ∂̌Ǐ[r, u]. Then a /∈ Ǐ[s, t], because a /∈ Ǐ[s, t]∩D = I[s, t].
Since Ď is regular, there exists an open set Oa ⊂ Ďa such that a ∈ Oa and
Oa ∩ Ǐ[s, t] = ∅. Let

O =
⋃

a∈βI[r,u]

Oa

Then O is disjoint from Ǐ[s, t]. Since βI[r, u] is dense in ∂̌Ǐ[r, u], O covers
∂̌Ǐ[r, u]. Therefore ∂̌Ǐ[r, u] ∩ Ǐ[s, t] = ∅, which proves the desired result. �

Notations 6.5.9 If O is an open set in S(a, b) ⊂ D, we shall denote its
closure in S(a, b) by O, its completion by Õ and the interior of Õ by Ǒ. Then
Õ, Ǒ ⊂ Š(a, b).

Lemma 6.5.10 Let D ⊂ M be a D-set, S(a, b) a spacelike hypersphere in D
and Š(a, b) its uniform completion. If V,W are open sets in S(a, b) such that
W ⊂ V , then

W̃ ⊂ V̌ .

Proof: Mutatis mutandis, the proof of Lemma 6.5.8 applies here. �

Theorem 6.5.11 Let U ⊂ M be a D-set and a, b, a′, b′ ∈ U such that a �
b, a′ � b′ and I(a, b) ∩ I(a′, b′) = ∅. Then

Ǐ(a, b) ∩ Ǐ(a′, b′) = ∅ .

Proof: For any x ∈ Ǐ(a, b), there exist rx, sx ∈ I(a, b), rx � sx such that
x ∈ Ǐ(rx, sx). By Lemma 6.5.8, Ǐ[rx, sx] ⊂ Ǐ(a, b), and therefore Ǐ(rx, sx) ⊂
Ǐ(a, b). Then

Ǐ(a, b) =
⋃

x∈Ǐ(a,b)

Ǐ(rx, sx) .
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Similarly,
Ǐ(a′, b′) =

⋃
x′∈Ǐ(a′,b′)

Ǐ(rx′ , sx′)

where x′ ∈ Ǐ(rx′ , sx′). Suppose now that there exist x ∈ Ǐ(a, b), x′ ∈ Ǐ(a′, b′)
such that x = x′. Then there exist rx, sx ∈ I(a, b), rx′ , sx′ ∈ I(a′, b′) such
that x ∈ Ǐ(rx, sx), x′ ∈ Ǐ(rx′ , sx′). Then x = x′ ⇒ I(rx, sx) ∩ I(rx′ , sx′) �= ∅,
which contradicts the assumption that I(a, b) ∩ I(a′, b′) = ∅. �

Theorem 6.5.12 Let W,W ′ be open sets in S(a, b) such that W ∩ W ′ = ∅.
Then W̌ ∩ W̌ ′ = ∅.

Proof: Let x ∈ W̌ , x′ ∈ W̌ ′ such that x = x′. Since x ∈ W̌ , x′ ∈ W̌ ′, there
exist sequences {cn}, cn ∈ W and {c′n}, c′n ∈ W ′ that converge to x ∈ W̌
and x′ ∈ W̌ ′ respectively. Let V̌x, V̌ ′x′ be open subsets of W̌ , W̌ ′ such that
x ∈ Ṽx ⊂ W̌x and x′ ∈ Ṽ ′x′ ⊂ W̌ ′

x′ . Let Vx ∈ V̌x ∩W and Vx′ ∈ V̌ ′x′ ∩W ′. Then
Vx ∩ V ′x′ = ∅. Furthermore, {cn} is ultimately in Vx and {c′n} is ultimately in
V ′x′ . As x = x′, the sequences {cn} and {c′n} are both ultimately in Vx ∩ V ′x′ ,
which is a contradiction. �

Theorem 6.5.13 Let D ⊂ M be a D-set and p, q a pair of spacelike points
in D, i.e., C+

p;D ∩ C−q;D = ∅. Then Č+
p;Ď

∩ Č−
q;Ď

= ∅.

Proof: There exist points r, s ∈ D such that r � p, q � s and r, s are
spacelike to each other, i.e.,

C+
p;D ⊂ C+

r;D, C−q;D ⊂ C−s;D

and
C+

r;D ∩ C−s;D = ∅ .

It follows from Theorem 6.5.11 that if x ∈ τČ+
r;Ď

and y ∈ τČ−
s;Ď

then x �= y.

The result follows from the facts that Č+
p;Ď

⊂ τČ+
r;Ď

and Č−
q;Ď

⊂ τČ−
s;Ď

, the
proofs of which are analogous to the proof of Lemma 6.5.8. �

6.5.3 Density Lemmas

We now establish two density lemmas:

Lemma 6.5.14 Let ξ, ζ ∈ Ď such that ξ � ζ. Then there exists η ∈ Ď such
that ξ � η � ζ.

Proof: It is a straightforward matter to find a, b ∈ D ⊂ Ď such that ξ �
a � b � ζ. Let l[p, q] ⊂ I(a, b), p <ll q. By Theorem 4.3.2, there exist points
c, d such that a � c � d � b. Choose η ∈ Ǐ(c, d). Then, by Lemma 6.5.4,
ξ � a � η � b � ζ. �
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Lemma 6.5.15 . Let z ∈ ∂̌Č+
x;Ď

, z �= x. Then there exists y ∈ ∂̌Č+
x;Ď

, x �=
y, y �= z such that z ∈ ∂̌Č+

y;Ď
.

Proof: Let {pn}, pn � pn+1 be a sequence in D that converges to x. Let
{qn}, qn � qn+1 and {rn}, rn � rn+1 be sequences in D that converge
to z from below and from above respectively, such that x /∈ Č+

q0,Ď
. Choose

h ∈ τČ+
x,Ď

∩ D such that h /∈ Č+
q0,Ď

and h /∈ Č−
r0,Ď

.

Let Vn = ∂̌Č−
h,Ď

∩ Ǐ[pn, rn]. Then Vn is closed, complete and nonempty,

and Vn+1 � Vn. Therefore ∩nVn is nonempty. Choose y ∈ V . Then y ∈ Č+
x,Ď

,

as y ∈ Č+
pn,Ď

for every n. If y ∈ τČ+
x,Ď

then also z ∈ τČ+
x,Ď

, which contradicts

the definition of z. Therefore y ∈ ∂̌Č+
x,Ď

.

By a similar argument (with x and z interchanged), y ∈ ∂̌Č−
z,Ď

. �

6.6 Extending the Order to M̌

The order completion M̌ of M is not yet an ordered space. We shall now
extend the order on M to M̌ . Logically, this would appear to be a two-step
process, the steps being:

1. Defining new light rays in M̌ through points ξ ∈ M̌ , ξ /∈ M .

2. Verifying that the order axioms are satisfied in M̌ .

However, to ensure that the definitions define new light rays uniquely, we shall
find it more convenient not to attempt such a clear-cut separation of the two.

6.6.1 New Light Rays in M̌

In the rest of this chapter, we shall make the following assumption:

Assumption 6.6.1 (Dimensionality assumption)

There are infinitely many light rays through any point of M .5

This means that the two-dimensional case is being excluded. For the two-
dimensional case, the results of interest may be established in a rather more
straightforward manner, and we shall omit the details.

To establish the results that follow, we shall make extensive use of the first
countability Assumption 6.5.1. As explained earlier, our constructions will be
local. That is, we shall define new light rays on boundaries of Ď-intervals that
lie entirely in Ď-sets, and then extend these segments backwards and forwards
by means of overlapping covers.
5 If there are at least three different light rays through every point, then one may

convince oneself that there are infinitely many different rays through every point.
Since we did not want to go into the details of this question we have posed it as
an assumption.
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Fig. 6.1. Defining the segments �[a, η] and �[η, b]

6.6.1.1 New Light Ray Segments on ∂̌Č+

a;Ď
and ∂̌Č−

b;Ď

Let D ⊂ M be a D-set, a, b ∈ D and a � b. Let η ∈ Š(a, b) \ S(a, b). Then η
does not belong to any ľ+a ∩ Ǐ[a, b] or any ľ−b ∩ Ǐ[a, b]. We shall define the ray
segments �[a, η] and �[η, b] (Fig. 6.1). To do so, we shall work entirely on ∂̌Ǐ[a, b]
or on Š(a, b), which are closed, and therefore complete uniform subspaces of
M̃ that are contained in M̌ . Recall that S(a, b) is densely embedded in Š(a, b).

Construction 6.6.2 (Defining the new segments)

Let O be a nonempty open set in S(a, b) such that η ∈ ∂Õ, Ǒ is connected
and Ǒ′ = Š(a, b)\ Õ is nonempty.6 There exists a Cauchy sequence {tn}, tn ∈
O, n ∈ N that converges to η ∈ ∂Õ. The light-ray segments l[a, tn] lie on
βI[a, b] ⊂ ∂̌Ǐ[a, b] for all n ∈ N. Fix a point p ∈ S(a, b) which is distinct from
each of the tn (Fig. 6.1). We shall make use of the standard maps ρ and σ
that were defined in Sect. 5.1.1:

ρ:l[a, t0] → l[p, b]

σn:l[p, b] → l[a, tn], n ∈ N ,
(6.13)

where σ0 is the inverse of ρ.
6 Construction 6.6.2 does not require either Ǒ′ �= ∅ or Ǒ∩Ǒ′ = ∅. We are preparing

the ground for the proof of Proposition 6.6.3 that follows.
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Let c0 be the generic point on l[a, t0], and let g = ρ(c0) (see Fig. 6.1). Let

cn = βC−g ∩ la,tn
. (6.14)

Then
cn = σn ◦ ρ(c0) ∈ S(a, g) ∀ n ∈ N . (6.15)

The sequence {cn}n∈N is Cauchy in S(a, g) and converges in Š(a, g), which is
proven as follows.

Let π : S(a, g) → S(a, b) be the stereographic projection from the vertex
a. π is a homeomorphism (the proof of continuity of π and of π−1 was given in
Sect. 5.4, Proposition 5.4.2). Now S(a, g) and S(a, b) are uniform subspaces
of M , and it follows immediately from the definition of uniform continuity
(Def. A.4.1) that π and π−1 are uniformly continuous. Then, from Proposition
A.4.4, the fact that {tn}n∈N is Cauchy in S(a, b) implies that {cn}n∈N is
Cauchy in S(a, g). Its convergence in Š(a, g) follows from the completeness of
the latter.

Set now
lim

n→∞ cn = x . (6.16)

As c0 runs over l[a, t0], its image cn (6.15) runs over l[a, tn] for each n ∈ N,
and the cn lie on βI[a, b]. Therefore the (ordered) set of limits

��[a, η] =
{

x | x = lim
n→∞ cn

}
, (6.17)

which is an exact ordered copy of each of the segments l[a, tn], lies on ∂̌Ǐ[a, b].
The light-ray segment �[a, η] is defined to be the Dedekind completion of
l�[a, η]. Since ∂̌Ǐ[a, b] is complete, it follows that �[a, η] ⊂ ∂̌Ǐ[a, b].

Finally, we shall prove that:

Proposition 6.6.3 The segment �[a, η] depends, not on the particularities of
the sequence {tn}, but only upon its limit η.

Proof: As the proof is long, it is broken up into a number of shorter steps:

1. We use the open sets O ⊂ S(a, b) and Ǒ′ ⊂ Š(a, b) that were defined in the
Construction 6.6.2, and set O′ = Ǒ′ ∩ S(a, b). Then O and O′ are disjoint
open sets in S(a, b), and η ∈ O ∩ O

′
in Š(a, b). Finally, tn ∈ O ∀ n ∈ N.

We pick a sequence {t′n}, n ∈ N such that i) t′0 = t0, ii) t′n ∈ O′ for n ≥ 1,
and iii) lim t′n = η.

2. Let �′[a, η] be the light ray segment defined (by Construction 6.6.2) by
the sequence {t′n}. We shall assume that �′[a, η] �= �[a, η], and arrive at a
contradiction.
We denote the standard maps : l[p, b] → l[a, t′n] by σ′n:

σ′n : l[p, b] → l[a, t′n], n ∈ N , (6.18)
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and set, by analogy with (6.15),

c′n = ∂C−g ∩ la,t′n , (6.19)

where, as in (6.14) and (6.15), c0 is the generic point on l[a, t′0] = l[a, t0],
and σ′0 = σ0. Furthermore,

c′n = σ′n ◦ ρ(c0) ∈ S(a, g) ∀ n ∈ N ,

where g = ρ(c0), as before (Fig. 6.1). If now

lim
n→∞ c′n = lim

n→∞ cn

for every c0 ∈ l(a, t0), then

��[a, η] = �′�[a, η] ,

and therefore �[a, η] = �′[a, η]. Conversely, if �[a, η] �= �′[a, η], then there
must be a point c0 ∈ l(a, t0) such that

lim cn �= lim c′n . (6.20)

In that case, we shall find that

lim tn �= lim t′n .

3. From now on, c0 will denote a fixed point on l(a, t0) for which the inequality
(6.20) is assumed to hold. Correspondingly, the point g = ρ(c0) will also
be fixed. We shall set

z = lim cn

z′ = lim c′n .
(6.21)

4. Since M̌ is Hausdorff, z and z′ can be separated by disjoint open sets
Ǔ , Ǔ ′ respectively. It follows that there exist points r, s, r0, s0 ∈ Ǔ ∩D and
r′, s′, r′0, s

′
0 ∈ Ǔ ′ ∩ D such that

r � r0 � s0 � s

and
r′ � r′0 � s′0 � s′

with
z ∈ Ǐ(r0, s0), z′ ∈ Ǐ(r′0, s

′
0)

and
Ǐ(r, s) ∩ Ǐ(r′, s′) = ∅ .

Then {cn} is ultimately in Ǐ(r0, s0) and {c′n} is ultimately in Ǐ(r′0, s
′
0).
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5. Let V = Ǐ(r, s) ∩ S(a, g), V0 = Ǐ(r0, s0) ∩ S(a, g) and V ′ = Ǐ(r′, s′) ∩
S(a, g), V ′0 = Ǐ(r′0, s

′
0) ∩ S(a, g). Then V ∩ V ′ = ∅, {cn} is ultimately in

V0 and {c′n} is ultimately in V ′0 . Furthermore, by Lemma 6.5.10, Ṽ0 ⊂
V̌ , Ṽ ′0 ⊂ V̌ ′.

6. Let W = π(V ), W0 = π(V0) and W ′ = π(V ′), W ′
0 = π(V ′0), where π :

S(a, g) → S(a, b) is the projection homeomorphism. Then π(cn) = tn,
π(c′n) = t′n, W,W0,W

′,W ′
0 are open in S(a, b), {tn} is ultimately in W0

and {t′n} is ultimately in W ′
0. Furthermore, W ∩ W ′ = ∅. By Theorem

6.5.12, the latter implies that W̌ ∩ W̌ ′ = ∅. But lim tn ∈ W̃0, lim t′n ∈ W̃ ′
0,

and, by Lemma 6.5.10, W̃0 ⊂ W̌ , W̃ ′
0 ⊂ W̌ ′, so that W̃0∩W̃ ′

0 = ∅, which in
turn implies that lim tn �= lim t′n. This contradiction establishes the desired
result. �

Proposition 6.6.4 Let ζ, η be distinct points in Š(a, b)\S(a, b). Then �[a, η]∩
�[a, ζ] = {a}.

Proof: Assume that there exists a point ϑ ∈ �[a, η]∩ �[a, ζ], ϑ �= a. From here
the proof uses the same ideas and techniques that were used in the proof of
Proposition 6.6.3, and the details are omitted. �

The segment �[η, b] is defined in exactly the same manner.

6.6.1.2 Properties of �[a, η]

We shall now prove that �[a, η] meets the requirements of a light ray segment
on ∂̌Č+

a;Ď
⊂ M̌ , that is, the limit �[a, η] has the following properties:

1. �[a, η] is totally ordered, by definition.

2. �[a, η] is closed, because it is homeomorphic to a closed interval on the real
line.

3. �[a, η] ⊂ ∂̌Ǐ[a, b], by construction.

4. �[a, η] ⊂ ∂̌Č−
η;Ď

.

Proof:

i) There exists a family of closed D-intervals I[un, wn] ⊂ D such that
un+1 � un � wn � wn+1, and ∩n∈N Ǐ[un, wn] = η (see Fig. 6.2).
Then {wn}n∈N is a Cauchy sequence in D which converges to η ∈
∂̌Č−

a;Ď
. Hence for tn ∈ I[un, wn],

ľ[a, tm] ⊂ Č−
wn;Ď

for m ≥ n .

Then �[a, η] ⊂ Č−
wn;Ď

for all n ∈ N, so that �[a, η] ⊂ Č−
η;Ď

.
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Fig. 6.2. Properties of the segment �[a, η]

ii) Suppose that ζ ∈ �[a, η] is an interior point of Č−
η;Ď

. Then there exist

p, q ∈ Č−
η;Ď

∩ D such that ζ ∈ Ǐ(p, q). It follows that q is spacelike to

a. Therefore, by Theorem 6.5.13, Č+
a;Ď

∩ Č−
q;Ď

= ∅, i.e., ζ /∈ �[a, η], a
contradiction.

�

5. Let h ∈ τC+
a;D such that un /∈ C−h;D for n ≥ N0 (see Fig. 6.2). Then

∂̌Č−
h;Ď

∩ �[a, η] consists of a single point.7

Proof: The segment l[a, tn] intersects βC−h;D at a single point in M . Denote
this point by kn:

kn = l[a, tn] ∩ βC−h;D .

By the same argument that led to (6.16), the sequence {kn} converges
to a unique point γ ∈ Š(a, h). From the definition of �[a, η] it follows
immediately that γ ∈ �[a, η].

�
6. Let ξ ∈ τČ+

a;Ď
such that un �∈ Č−

ξ;Ď
for some n. Then ∂̌Č−

ξ;Ď
∩ �[a, η] �= ∅

consists of a single point.
Proof: The just-established property 5) of �[a, η] provides, together with
the Definition 6.10 of Č−

ξ;Ď
, a convergent sequence of points on �[a, η]. The

intersection in question is the limit of this sequence.
�

Finally, we establish the following:

Theorem 6.6.5
�[a, η] =

⋂
n∈N

Ǐ[a,wn]

7 Recall that we use the prefix τ to denote the interiors of cones in both M and M̌ .



86 6 Order and Uniformizability

where the points wn are as above, i.e., wn � wn+1 and the sequence {wn}n∈N

converges to η.

Proof:

1. From the definition (6.17) of ��[a, η] as a set of limits, it follows that

��[a, η] ⊂ Ǐ[a,wn] ∀ n ∈ N .

Since Ǐ[a,wn] is complete and �[a, η] is the completion of ��[a, η], it follows
that �[a, η] ⊂ Ǐ[a,wn].

2. The intersection
L =

⋂
n∈N

Ǐ[a,wn]

contains no interior point of Č+
a;Ď

. For if z ∈ L is an interior point of Č+
a;Ď

,

then η ∈ Š(a, b) ⇒ η /∈ Ǐ[z, w1]. Since M̌ is regular, so is Ď, and therefore
there exists a neighbourhood Vη ⊂ Ď of η which does not intersect the
closed set Ǐ[z, w1]. Now Vη contains every wn for n ≥ N0. Therefore

Ǐ[z, w1] ∩ Ǐ[a,wn] = ∅ for n ≥ N0 ,

which contradicts the condition z ∈ L. Therefore L ⊂ ∂̌Č+
a;Ď

.

3. Finally, let z ∈ L but z /∈ �[a, η]. Since z is not an interior point of Č+
a;Ď

,

it cannot be an interior point of Ǐ[a,wn] for any n. Then necessarily

z ∈ ∂̌Ǐ[a,wn] ∀ n ∈ N . (6.22)

Since wn � wn+1 for every n, the intersection ∂̌C−
wn;Ď

∩ ∂̌C−
wn+1;Ď

= ∅
for every n, so that (6.22) implies that a <ll z (the ray segment �[a, z] has
already been defined) and �[a, z] ∩ �[a, η] = {a}. Then

Č+
z;Ď

∩ �[a, η] = ∅ . (6.23)

However, z ∈ L implies that

wn ∈ Č+
z;Ď

∀ n ∈ N ,

which in turn implies that η ∈ Č+
z;Ď

, which contradicts (6.23).
�

The segment �[a, η] does not lie on the completion of any light ray in M ,
which justifies the term new light ray. The proof is furnished by the following
theorem:

Theorem 6.6.6 Let U ⊂ M be a D-set and �[a, η] ⊂ Ǔ . If x ∈ �[a, η], x �= a,
then x /∈ M .
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Proof: Suppose, to the contrary, that x ∈ M . Then there is a light ray la,x

through a and x in U ⊂ M , and this ray belongs to βC±a;D, i.e., η ∈ M , which
contradicts the assumption η /∈ U ⊂ M . �

Observe that Theorem 6.6.5 can be used as an alternative definition of the
segment �[a, η]. We also have, for points in on �(a, η):

Proposition 6.6.7 Let ξ ∈ �(a, η), and let {vn}, vn+1 � vn be a sequence of
points in C+

a;D that converges to ξ. Then

�[a, ξ] =
⋂
n∈N

Ǐ[a, vn] .

Proof: The proof is straightforward, and the details are omitted. �

Theorem 6.6.8 Let η ∈ ∂̌Č+
a;Ď

. Then �[a, η] = ∂̌Č+
a;Ď

∩ ∂̌Č−
η;Ď

.

Proof: By definition, �[a, η] ⊂ ∂̌Č+
a;Ď

. From part 4) of Properties 6.6.1.2,

�[a, η] ⊂ ∂̌Č−
η;Ď

. Therefore

�[a, η] ⊂ ∂̌Č+
a;Ď

∩ ∂̌Č−
η;Ď

. (6.24)

Let {wn}, wn+1 � wn, wn ∈ C+
a;D be a sequence that converges to η. Then

Č−
η;Ď

=
⋂
n∈N

Č−
wn;Ď

,

so that
Č+

a;Ď
∩ Č−

η;Ď
=

⋂
n∈N

(
Č+

a;Ď
∩ Č−

wn;Ď

)
=

⋂
n∈N

Ǐ[a,wn]

= �[a, η]

where the last line follows from Proposition 6.6.5. Combining with the inclu-
sion (6.24), we have the desired result. �

6.6.1.3 New Light Ray Segments on ∂̌Č+

ξ;Ď

Let ξ ∈ Ď and η ∈ ∂̌Č+
ξ;Ď

. Set

L = ∂̌Č+
ξ;Ď

⋂
∂̌Č−

η;Ď
. (6.25)

Then

Theorem 6.6.9 L is totally ordered by the relation < (equivalently, by the
relation > ).
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Proof: The proof depends on the fact that L is a closed, and therefore com-
plete subset of M̌ .

The relation < defines a partial order on Ď, and therefore on L. Let K be
a maximal totally ordered (by <) subset of L that has ξ as its smallest and η
as its largest element, and has the property that if z ∈ L\K then there exists
x ∈ K such that x and z are spacelike to each other. Now:

1. If K = L then there is nothing to prove.
2. Suppose, therefore, that K �= L, and consider the completion K̃ of K.

Since L is complete and K ⊂ L, it follows that K ⊂ K̃ ⊂ L. Again, there
are two possibilities:

a) K̃ �= K.
b) K̃ = K.

a) Suppose that K̃ �= K, and y ∈ K̃ \ K. Then x (the point spacelike to
y) defines a section of K, i.e., a pair of subsets A,B ⊂ K such that
A ∩ B = ∅, A ∪ B = K and z ∈ A, z′ ∈ B ⇒ z < z′. Then there exist
Cauchy sequences {zi} in A and {z′j} in B that converge to y ∈ K̃. But
then Č+

y;Ď
= ∩Č+

zi;Ď
and Č−

y;Ď
= ∩Č−

z′j ;Ď
, i.e., y ∈ K, a contradiction. This

rules out the possibility K̃ �= K. The proof is somewhat simpler if one of
the sets {zi} and {z′j} is finite, for the finite set contains a maximal and
minimal element.

b) If K̃ = K �= L, then there must be gaps in K, i.e., pairs of points y, y′

such that y < y′, y �= y′ and ∂̌Č+
y;Ď

∩ ∂̌Č−
y′;Ď

= ∅. But this is ruled out

by Lemma 6.5.15, which means that the possibility K̃ = K �= L is also
excluded. The only possibility that remains is K = L.

�
In view of Theorem 6.6.9, we define:

Definition 6.6.10 (Segments �[ξ, η])

If ξ, η ∈ Ď, η ∈ ∂̌Č+
ξ;Ď

, ξ �= η, then

�[ξ, η] = ∂̌Č+
ξ;Ď

⋂
∂̌Č−

η;Ď
.

As before, the orders on �[ξ, η] will be denoted by <l (or l> ) and <ll . �

Theorem 6.6.11 Let {an}, an+1 � an and {bn}, bn+1 � bn be Cauchy se-
quences in D that converge to ξ and η respectively in Ď. Then

�[ξ, η] =
⋂
n∈N

Ǐ[an, bn] .
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Proof: Since am � bn ∀ m,n ∈ N, the I[an, bn] are nonempty. Since ∂̌Č+
ξ;Ď

∩
∂̌Č−

η;Ď
⊂ ∩Ǐ[an, bn], it suffices to prove that ∩Ǐ[an, bn] contains no interior

point of Č+
ξ;Ď

or of Č−
η;Ď

. Let x be an interior point of Č+
ξ;Ď

. Then x /∈ Č−
η;Ď

,

and there exist p, q ∈ Č+
ξ;Ď

such that x ∈ Ǐ(p, q) ⊂ Ǐ[p, q] ⊂ τČ+
ξ;Ď

. Then
there exists N such that p and bn are spacelike to each other for n ≥ N . For
suppose that there is no such N . Then p ∈ Č−

bn;Ď
for all n ∈ N, i.e., p ∈ Č−

η;Ď
, a

contradiction. However, if p and bn are spacelike to each other for n ≥ N , then
p /∈ Ǐ[an, bn] for n ≥ N , i.e., x /∈ ∩Ǐ[an, bn]. This contradiction establishes the
desired result. A similar proof establishes that ∩Ǐ[an, bn] contains no interior
point of Č−

η;Ď
. �

6.6.1.4 Properties of �[ξ, η]

The limit �[ξ, η] has the following properties:

1. �[ξ, η] is totally ordered, by Theorem 6.6.9.

2. �[ξ, η] is closed, because it is the intersection of the sets ∂̌Č+
ξ;Ď

and ∂̌Č−
η;Ď

that are closed in Ď.

3. �[ξ, η] ⊂ ∂̌Č+
ξ;Ď

, by definition.

4. �[ξ, η] ⊂ ∂̌Č−
η;Ď

, by definition.

5. Let p ∈ τC̃+
ξ;Ď

∩ D such that bn /∈ C−p;D for n ∈ N, where the bn are as

defined in Theorem 6.6.11. Then ∂̌Č+
p;Ď

∩ �[ξ, η] is a unique point.

Proof: Since p is spacelike to every bn, there is a backward ray l−p (in M)
from p that intersects every βC−bn;D. (The argument is the same that was
used in the first paragraph of the proof of Lemma 6.5.15.) Let {wn} =
l−p ∩βC−bn;D. Then wn+1 <ll wn, and the sequence {wn} is bounded below.
Therefore it has a limit, say ζ1, in ľ−p , and ζ1 ∈ ľ−p ∩ �[ξ, η].

Suppose now that there is another backward ray l′−p from p that intersects
every βC−bn;D. Then it intersects �[ξ, η] at a point ζ2. But since ζ1 ∈ ľ−p and
ζ2 ∈ ľ′−p , it follows that ζ1 and ζ2 are spacelike to each other, a contradic-
tion. Therefore l−p = l′−p and ζ1 = ζ2. �

6. Let ζ ∈ τČ+
ξ;Ď

such that bn /∈ C−
ζ;Ď

for n ∈ N. Then ∂̌Č+
ζ;Ď

∩ �[ξ, η] is a
unique point.

Proof: Let {vn}, vn ∈ τČ+
ξ;Ď

, vn � vn+1 be a sequence of points in D

that converges to ζ. By property 5) just above, ∂̌Č−
vn;Ď

∩ �[ξ, η] is a unique
point, say ζn. The point in question is the limit of the sequence ζn. �
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6.6.1.5 Extending Light Ray Segments

The light rays l are globally defined in M . The segment �[ξ, η] is defined locally
in Ď. One has to extend the definition of � globally by means of overlapping
covers. The key to this extension is provided by the following lemma:

Lemma 6.6.12 Let y ∈ ∂̌Č+
x;Ď

, y �= x. Then the set ∂̌Č+
x;Ď

∩ ∂̌Č+
y;Ď

is totally
ordered by <.

Proof: Let z ∈ ∂̌Č+
x;Ď

∩ ∂̌Č+
y;Ď

. Then the light ray segments �[x, z], �[y, z] are
defined and ordered by <, and �[x, z] ⊃ �[y, z]. The result follows. �

Combined with overlapping covers, Lemma 6.6.12 provides a ready proce-
dure for extending segments of the new light rays �. We omit the straightfor-
ward details.

This completes the definition of new light rays in M̌ .

6.6.2 Verifications

We shall now verify that M̌ is indeed an ordered space in our sense of the
term. For ease of reference the axioms, the definition of a D-set and the
special assumptions are collected together (without change of numbering) in
Appendix C.

6.6.2.1 The Order Axiom

It is easy to see that the family of light rays in M̌ satisfies the order Axiom
3.1.2. Parts a) and b) are among the standard properties of R. Part c), which
states that light rays do not have end-points, follows from the exclusion of
boundary points in the definition of order completion. Part d) follows from
the facts that order in M̌ is defined by extending the order relations <l,�
and < on M to M̌ , and that these extensions never reverse the direction.

6.6.2.2 The Identification Axiom

If l and l′ are two distinct light rays in M , then the identification axiom holds
obviously for their completions ľ and ľ′. Property 6.6.1.4, part 5 states that
two light rays can intersect only once in a Ď-set. Finally, the identification
axiom is used explicitly as a defining tool, to extend the definition of the
segment �[ξ, η] (see Sect. 6.6.1.5), and therefore it cannot be violated by pairs
of new rays �, �′.
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6.6.2.3 Definition of Forward and Backward Cones

The local cones Č±
x;Ď

were defined topologically (Def. 6.4.5) in Sect. 6.4. We
begin by establishing their order-theoretic characterization.

Lemma 6.6.13 Let y ∈ Č+
x;Ď

. Then:

1. If y ∈ ∂̌Č+
x;Ď

then there exists a light ray that joins x and y.

2. If y ∈ τČ+
x;Ď

then there exist ascending l-polygons from x to y.

The same assertions hold with order reversed.

Proof: From the definition of Č±
x;Ď

, it follows that y ∈ Č+
x;Ď

⇔ x ∈ Č−
y;Ď

.

1. Let y ∈ ∂̌Č+
x;Ď

. If x, y ∈ D then, by definition, λ(x, y). If x ∈ M but y /∈ M

then, from Theorem 6.6.8, ∂̌Č+
x;Ď

∩ ∂̌Č−
y;Ď

= �[x, y]. If x, y /∈ M then, from

Def. 6.25 and Theorem 6.6.9, ∂̌Č+
x;Ď

∩ ∂̌Č−
y;Ď

= �[x, y].

2. We disregard the trivial case x, y ∈ M . Let y ∈ τČ+
x;Ď

. Then any backward

ray from y intersects ∂̌Č+
x;Ď

at exactly one point (Property 6.6.1.2(6) or
Properties 6.6.1.4(5, 6), as the case may be). It now follows from 1) above
that x is connected to y by an ascending l-polygon with two sides. Then x
can be connected to y by ascending polygons with n sides for any n ≥ 2.

The same proofs hold with order reversed. �
We now define cones globally as follows:

Definition 6.6.14

C+
x ≡

⋃
P�x

P ascending

P

C−
x ≡

⋃
P�x

P descending

P

and
Cx ≡ C+

x

⋃
C−

x .
�

6.6.2.4 The Cone Axiom

Earlier, we gave an example (Example 3.2.9) of a space – the anti-de Sitter
space – which was locally R2, but did not satisfy the cone axiom. The same ex-
ample could be constructed using F, the field of real algebraic numbers (which
is denumerable) instead of R. This shows that the cone axiom is independent
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of completeness or incompleteness. In the example cited, the failure of the
cone axiom can be traced to the global topology of the space.

However, it may be proved that the cone axiom holds in M̌ if it holds in
M . The proof is as follows.

Let M be an ordered set which satisfies the cone axiom (i.e., a � b ⇒ b ��
a), M̌ its order completion and x ∈ M̌ . Set

Q = Č+
x ∩ Č−x \ {x} . (6.26)

We shall assume that Q �= ∅ and derive a contradiction.

Lemma 6.6.15 If Q �= ∅, then for any a, b ∈ M such that a � x � b,

Ǐ[a, b] ∩ Q �= ∅ .

Proof: Let y ∈ Q. Since y belongs to Č−x , there exists a descending l-polygon
P (y, . . . , x) from y to x. Traversing P in the opposite direction we obtain an
ascending l-polygon P (x, . . . , y). Since y also belongs to Č+

x , it follows that P
also belongs to Č+

x . Hence P ⊂ Č+
x ∩ Č−x , which proves the lemma. �

Theorem 6.6.16
Q = ∅ .

Proof: Choose z ∈ Q and let {an}, {bn} be sequences in M such that an →
x, bn → x, and

an � an+1 � x � bn+1 � bn .

Also, let {cn}, {dn} be sequences in M such that cn → z, dn → z, and

cn � cn+1 � z � dn+1 � dn .

Then I[an, bn] ∩ I[cm, dm] = ∅ for sufficiently large n and m, and hence by
Theorem 6.5.11, Ǐ[an, bn] ∩ Ǐ[cm, dm] = ∅ for such n,m. But z ∈ kD+

x,Ď
⊂

Ď+
an,Ď

and z ∈ Ď−
x,Ď

⊂ Ď−
bn,Ď

implies z ∈ Ǐ[an, bn] for all n, which is a
contradiction. �

6.6.2.5 D-sets

We shall prove that the sets Ď = int D̃ ⊂ M̌ , where D is a D-set in M , are
indeed D-sets in M̌ , i.e., they satisfy the conditions a)–f) of Definition 4.2.1
(also reproduced in Appendix C).

a) x, y ∈ Ď, x � y ⇒ Ǐ[x, y] ⊂ Ď.
Let Ux, Uy be open sets in M̌ such that x ∈ Ux ⊂ Ď, y ∈ Uy ⊂ Ď and
Ux∩Uy = ∅. There exist Cauchy sequences {an} ⊂ Ux and {bn} ⊂ Uy that
converge to x and y respectively such that an+1 � an and bn+1 � nn for
all n ∈ N. Then
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Ǐ[x, y] =
(
∩Č+

am;Ď

)
∩
(
∩Č−

bn;Ď

)
=

⋂
n∈N

(
Č+

an;Ď
∩ Č−

bn;Ď

)
=

⋂
n∈N

Ǐ[an, bn] .

From the separation Lemma 6.5.8, Ǐ[a1, b1] ⊂ Ǐ(a0, b0). Since Ǐ(a0, b0) ⊂
Ď, the result follows.

b) Since Ď is an open set, the intersection of a light ray (either ľ or �) cannot
have a largest or a smallest element (with respect to order on the ray).

c) Let x, y, z ∈ Ď, x � y � z. Then ľ+y (or �+y , as the case may be) intersects
∂Č−

z;Ď
\{z} at a single point and ľ−y (or �−y , as the case may be) intersects

∂Č+
x;Ď

\ {x} at a single point; these are precisely the properties 5 and 6 of
�[a, η] and �[ξ, η] that were established earlier (Sects. 6.6.1.2 and 6.6.1.4).

d) The convexity axiom: If two distinct points lie on a ray ľ, this ray will
clearly satisfy the convexity axiom with respect to ∂̌Č±

x;Ď
for any x ∈ ľ∩Ď.

New rays � are defined segmentwise by intersections �[x, y] = ∂̌Č+
x;Ď

∩
∂̌Č−

y;Ď
, and therefore the ray � will also satisfy the convexity axiom with

respect to ∂̌Č±
z;Ď

for any z ∈ � ∩ Ď.

e) By construction, if y ∈ ∂̌Č+
x;Ď

or x ∈ ∂̌Č−
y;Ď

, there exists only one light
ray that passes through x and y.

f) The cardinality of the set of rays through x ∈ M̌ cannot be smaller than
the cardinality of the set of rays through a ∈ M .

6.6.2.6 The Local Structure Axiom

It was established above that every Ď-interval is a D-set. By definition, every
point ξ introduced by the completion is contained in a nonempty open Ď-
interval Ǐ(a, b). Observe that the family of Ď-intervals {Ǐ(a, b)|a, b ∈ D ⊂
M,a � b} is a base for the order topology of M̌ .

This concludes our verification of the axioms in M̌ . We have, in the
process, justified the notations and terminology that had been carried over
from M to M̌ .

6.7 Remarks on the Assumptions 6.4.1 and 6.5.1

1. In Sect. 6.4, we made the assumption of local precompactness (6.4.1) to
ensure that the order uniformity on a D-set was the only uniformity on
D compatible with its topology. However, we made no explicit use of this
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assumption for extending the order structure to the order completion M̌ of
M . What we did use extensively was the local topological structure of M̌ ,
which should be common to all uniform completions of M . It is therefore
possible that the results of this chapter hold largely, if not in their entirety,
without the assumption of local precompactness.

2. In Sect. 6.5, we made the Assumption 6.5.1 that the topology of M satisfies
the first axiom of countability. This enabled us to use sequences in the
constructions and the proofs. It should, however, be noted that wherever
sequences have been used, they may be replaced by nets with little more
than notational changes. It is therefore likely that the results of this chapter
hold without the assumption of first countability.

We have not studied either of these questions.



7

Spaces with Complete Light Rays

In this chapter we shall establish some results that hold in ordered spaces in
which light rays are complete (in which case they are locally homeomorphic
with R),1 but the space as a whole need not be order complete. We begin with
an example of such a space, which is infinite-dimensional. We should add that
we know of no example of a finite-dimensional ordered space in which light rays
are complete but the space itself in not (order) complete. The phenomenon
could be peculiar to infinite-dimensional spaces.

The properties established in this chapter are the connectivity properties
(Sect. 7.2) and a miscellany of global properties (Sect. 7.3).

In the sequel, there will be no further need to adhere to the special no-
tations of the previous chapter (Sect. 6.4), particularly Def. 6.4.1. We shall
therefore revert to our original notations, which will apply henceforth to all
ordered spaces, be they order complete or otherwise.

The space of the Example 7.1 given below is second countable, and there-
fore first countable. However, the results that follow are established without
the first countability Assumption 6.5.1.

7.1 An Infinite-dimensional Space

In the following example, the light rays are complete, but the space itself fails
to be order complete.

Example 7.1.1 Consider the space S of real sequences s = {xn}, n = 0, 1 . . .
in which only a finite number of entries are nonzero, and define on S the
1 Since an ordered space is Tychonoff and the Tychonoff property is hereditary

[57], every light ray is Tychonoff in the subspace topology, and can therefore be
completed (uniformly) independently of the rest of the space. If the light ray has
an overlapping D-cover, then its completion will be locally homeomorphic with R.
One can therefore imagine an ordered space in which the light rays are complete,
but the space itself is not order complete.

H.-J. Borchers and R.N. Sen: Mathematical Implications of Einstein–Weyl Causality,
Lect. Notes Phys. 709, 95–101 (2006)
DOI 10.1007/3-540-37681-X 7 c© Springer-Verlag Berlin Heidelberg 2006
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Minkowski form
|x|2 = −x2

0 +
∑

k∈N+

x2
k .

If z is any point such that |z|2 = 0, then the set of points {λz}, λ ∈ R defines
a light ray. It is clearly locally homeomorphic with R. However, the sequence
of points {sN}N∈N+ , where

sN =

⎧⎪⎨⎪⎩
1
n2

, 1 ≤ n ≤ N

0, n > N,

which is clearly Cauchy, does not converge in S. Therefore S is not complete.
Its completion is the space l2 of all convergent sequences, which is a Hilbert
space without holes or boundaries. Therefore the order completion of S is the
same as its completion, and therefore S is not order complete.

7.2 Connectivity Properties

This fact that light rays are locally homeomorphic with R leads immediately
to the following connectivity results:

Theorem 7.2.1 Let M be an ordered space in which light rays are complete.
Then M is path-connected.

Proof: If every light ray is complete, then every l-polygon becomes a path,
and the l-connectedness condition becomes the path connectedness condition.

�

Theorem 7.2.2 Let M be an ordered space in which light rays are complete.
Then M is connected.

Proof: For any separation of M into disjoint open subsets will break up light
rays into disjoint open segments – which is impossible. �

7.3 Some Global Results

The results that will be established below are global. They may be classified
as follows: 1) Local properties that extend globally, and 2) global properties
that have no local counterparts.
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7.3.1 Local Properties that Extend Globally

We begin with the following proposition:

Proposition 7.3.1

Let M be an ordered space in which light rays are complete. Let x, y ∈ M
and x �= y. Then there exists an l-polygon P (x0, x1, . . . , xn), n ∈ N, where
x0 = x and y = xn, such that any two of its successive vertices xi, xi+1, i =
0, 1, . . . , n − 1, lie in a D-set.

Proof: It suffices to prove that every closed light ray segment lies in a D-set.
Since the light rays in M are complete, closed segments of light rays l, being

homeomorphic to closed intervals in R, are compact in the order topology <l

on l. So therefore is the l-polygon P (x0, . . . , xn). Since the order topology on l
is equivalent to the subspace topology inherited from M , it follows that every
D-cover of P has a finite subcover.

Suppose that the segment l[xn, xn+1] is covered by m D-sets Di, i =
1, . . . , m. Consider the two D-sets Di, Di+1 and choose points yi, i = 1, 2, 3
in l[xn, xn+1] with y1 ∈ Di−1 ∩ Di, y2 ∈ Di ∩ Di+1 and y3 ∈ Di+1 ∩ Di+2.
Then we can find points p, q ∈ Di such that p � y1, q � y2 and r, s ∈ Di+1

with r � y2, s � y3. This implies that l[y1, y2] ⊂ I(p, q) and l[y2, y3] ⊂ I(r, s).
Let p0 = βC+

p ∩ ly1,y2 and s0 = βC−s ∩ ly2,y3 . Then we can find a ∈ l(p, p0)
and b ∈ l(s0, s) such that I(a, b) ⊂ I(p, q) ∪ I(r, s). For arbitrarily chosen
points a, b it might happen that a light ray l(2) other than lxi,xi+1 intersects
lxi,xi+1 twice. Call these points of intersection z1, z2. Since we cannot exclude
the possibility that the two light rays l(2) and lxi,xi+1 are close to each other,
it might happen that l(2)[z1, z2] ⊂ I(a, b). However, the two light rays are not
arbitrarily close to each other, and therefore we can find points a1, b1 with
a <l a1 <l p0 and s0 <l b1 <l b such that no two light rays intersect twice in
I(a1, b1). The other properties of D-sets (Def. 4.2.1) are easily verified.

If l[xk, xk+1] is covered by n D-sets, n > 2, then one has to repeat the
construction n − 1 times to obtain a single open order interval that covers
l[xk, xk+1]. �

In Chap. 3 we gave an example (Fig. 3.6 and Remarks 3.2.23) of an ordered
space that did not have the property S (Def. 3.2.21; if x, y ∈ M then y ∈
τC−x ⇔ x ∈ τC−y ). In the example, failure of the property S could be traced
immediately to the fact that M consisted of two (open) half-planes joined by
a single point, the origin. However, this example does not satisfy the local
structure axiom; there is no D-set that contains the origin. This suggests that
if the two half-planes are joined, not by a single point, but by a D-set, no
matter how “small”, property S will be recovered.

Theorem 7.3.2 Let M be an ordered space in which light rays are complete.
Then M is an S-space, that is, if p, q ∈ M then q ∈ τC+

p ⇔ p ∈ τC−q .
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Fig. 7.1. Establishing Property S

Proof: Since every light ray is locally homeomorphic with R and since every
point in M is contained in a D-set, it follows that every light ray has an over-
lapping cover. Suppose that p ∈ τC−q . Then there exist descending l-polygons
from q to p which are also ascending l-polygons from p to q. In view of Propo-
sition 7.3.1, we may, without loss of generality, confine our attention to those
with sides that are contained in D-sets. Let then P (p = x0, x1, . . . , xn = q)
be an ascending l-polygon, with xi <l xi+1, i = 0, . . . , n−1, ∼λ(xi, xi+2), i =
0, . . . , n − 2 such that l[xi, xi+1] ⊂ Di, where Di is a D-set.

Consider the segments l[x0, x1] and l[x1, x2]. We may find points a, b, c, d
such that a � b, c � d and

l[x0, x1] ⊂ I(a, b) ⊂ I[a, b] ⊂ D1 ,
l[x1, x2] ⊂ I(c, d) ⊂ I[c, d] ⊂ D2

(see Fig. 7.1). Since x1 ∈ I(a, b), the segment l[x1, x2] intersects βI[a, b] at
a single point, say w. Then w � x0, and therefore there exists u such that
w � u � x0. Then βC+

u ∩ l[x,w] is a single point, say v, and there is,
trivially, an ascending l-polygon P (u, v, x2, . . . , xn). It follows that, for any
point ω ∈ S(x, u), there is an ascending l-polygon P (x0, ω, u, v, x2, . . . , xn),
i.e., q ∈ τC+

p .
The reverse implication is proved in the same manner. �
Finally, we establish that Theorem 4.5.4 holds globally, and not just in

D-sets:
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Theorem 7.3.3 Let M be an ordered space in which light rays are complete,
and x ∈ M . Then τC+

x = int C+
x , and the same with order reversed.

Proof: It will suffice to prove the assertion for positive cones.
Let y ∈ τC+

x . Then there exists an l-polygon P (x, x1, . . . , xn, y) such that
l[xi, xi+1] ⊂ Di, where Di is a D-set, i = 1, 2, . . . n. Consider the segment
l[xn, y] ⊂ Dn. By assumption, y ∈ τC+

x , but for xn there are the two possi-
bilities, xn ∈ τC+

x or x ∈ βC+
x . Choose a point p ∈ l(xn, y). Then (in either

case) p ∈ τC+
x . Next, choose a light ray lp �= lxn,y. Then l−p intersects C+

x in
a nonempty closed segment, and βC+

x at a single point (which need not be
named). Therefore there exists q <ll p such that l[q, p] ⊂ τC+

x . We may, with-
out loss of generality, choose q close enough to p so that q ∈ τC+

x ∩ Dn. This
implies that q � y. From the definition of the cone, there exists r ∈ τC+

x ∩Un

such that r � y. Then y ∈ I(q, r) ⊂ τC+
x , which proves that τC+

x is open. �
It should be noted that the statement βC±x = ∂C±x will not be true glob-

ally; see the example in 3.2.16.

Theorem 7.3.4 Let M be an ordered space in which light rays are complete.
Let x, y, z ∈ M such that y, z ∈ βC+x and x <l y, y <l z. Then z ∈ lx,y.

Proof: Let U be a D-set containing y, and p ∈ l[x, y] ∩ U, p �= y. Next,
choose q ∈ l[y, z] ∩ U, q �= y. Since τC+

p ⊂ τC+
x and q ∈ βC+

x it follows that
q ∈ βC+

p . Therefore, by the convexity axiom, lp,y = ly,q. This implies that
lp,y = ly,q = lx,z. �

Corollary 7.3.5 Let M be an ordered space in which light rays are complete,
and y ∈ βC+

x ⊂ M . Then there exists a light ray lx through x that passes
through y.

Proof: Since y ∈ βC+
x ⊂ C+

x , there exist ascending l-polygons from x to y.
Assume that xi ∈ βC+

x . Then xi+1 ∈ βC+
x , because xi+1 ∈ τC+

x would imply
y ∈ τC+

x , contradicting the assumption. It then follows from Theorem 7.3.4
that x, xi, xi+1, . . . , y lie on the same light ray. �

The method of proving Theorem 4.2.12, p. 37 allows one to generalize
Lemma 4.2.18, p. 40 as follows:

Corollary 7.3.6 Let y ∈ βC+
x ⊂ M . Let ly be a light ray through y such that

ly �= lx,y. Then l+y \ {y} ⊂ τC+
x . �

7.3.2 Global Properties Without Local Counterparts

If we look at a light ray globally, and not just in a D-set, we find that we have
not excluded the possibility that a light ray through x starts on βC+

x and at
some later time (outside a D-set) enters into the interior of C+

x . The fact that
this can happen can be seen from the example of the cylinder based on the
circle S1. Here the light rays are spirals that make an angle of π/4 with the
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horizontal circles, and two light rays through x meet infinitely many times.2

The next result shows that this is a general feature (which holds even if the
ordered space is not complete):

Lemma 7.3.7 Let M be an ordered space in which light rays are complete,
and such that there are more than two light rays through each point. Let x, y ∈
M, x <l y. If two or more light rays through x intersect at y, then

l+y \ {y} ⊂ τC+
x

for each of these light rays.

Proof: Assume, to the contrary, that there exists a point z ∈ l+y that belongs
to βC+

x . Let l′ be another light ray connecting x with y. Then l′[x, y], l[y, z] is
an l-polygon connecting x with z. Since z ∈ βC+

x , Theorem 7.3.5 asserts that
l = l′, a contradiction. �

We shall now show that the situation described in Lemma 7.3.7 is the only
one in which a light ray can “dive” into the interior of a light cone.

Theorem 7.3.8 Let M be as in Lemma 7.3.7.3 Let x ∈ M and l
(1)
x a light

ray through x. Assume that there exists a point z ∈ l
(1)+
x such that x � z and

z ∈ τC+
x . Then there exists y ∈ l

(1)+
x , y <l z, y �= z such that x and y are

connected by at least two different light ray segments.

Proof: First, consider the ray l
(1)
x as a topological subspace of M . The inter-

section l
(1)
x ∩ τC+

x is open in M , because τC+
x is open in M . It is nonempty

because, by hypothesis, it contains the point z. Therefore the set

Λ = l(1)+x \ {l(1)+x ∩ τC+
x }

is closed in l
(1)
x . Since Λ is totally ordered, it contains a maximal element y,

and every t ∈ l
(1)
x with y <l t, t �= y is contained in τC+

x .
Observe that C+

y \ {y} ⊂ τC+
x . Suppose that this is not true. Then there

exist points p ∈ βC+
x ∩ C+

y \ {y}. However, if l[y, p], l[x, y] ⊂ βC+
x , then

p ∈ l
(1)
x,y, i.e., C+

y \ {y} ⊂ l
(1)
x , which is impossible.

Let now V be a D-cover for l
(1)
x [x, z]. Set W = ∪V ∈VV and choose q ∈

{∂{βC+
x ∩ W}} ∩ W with q �∈ l

(1)
x . There are three possibilities:

2 The formation of images by ideal lenses, i.e., lenses that have no aberrations,
would provide physical examples; all forward rays from the object point meet
again at the image point.

3 In two-dimensional examples such as S1 × R considered above, a suitably-placed
hole in M would obstruct the second light ray through x from intersecting the
first.
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i) q <l y.

ii) q � y.

iii) q and y are spacelike.

In case i) the points (y, q, x) lie on the same light ray, which is the ray l(2)

we are looking for. Case ii) is impossible, since it would imply that y ∈ τC+
x ,

contradicting the construction of y. In case iii) we choose s /∈ lx,q with s > q,
which implies s � x. As usual we set S(x, s) = βC+

x ∩ βC−s , and again find
that there are three possibilities:

a) There exists u0 ∈ S(x, s) with u0 <l y and u0 /∈ l(1).

b) u ∈ S(x, s) and u � y and u � y, with the possible exception of one
point u0. The exception occurs if u0 ∈ l(1).

c) u ∈ S(x, s), u and y are spacelike, with the possible exception of one point
u0.

In case a) one has lx,u0 = lu0,y = l(2). In case b), u � y implies that lx,u ∩
βC−y = p is a single point. This in turn implies that lx,p = lp,y = l(2). In case c)
we choose tn ∈ l(1), y <l tn such that tn+1 <l tn and {tn} converges to y. This
construction implies that tn � x. Therefore the intersection lx,u ∩ βC−tn

= pn

consists of a single point. Since tn is monotonic decreasing and is bounded
below by y we conclude that pn ∈ lx,u is also monotonic decreasing and
bounded below. Hence this sequence converges to a point p <l y. Then, as
before, lx,p = lp,y = l(2). �

We end this chapter with the remark that, as shown in [11], one can
construct timelike curves connecting any two points a, b ∈ U ⊂ M, a � b,
where U is a D-set and M an ordered space in which light rays are complete.
The timelike curves so constructed turn out to be locally homeomorphic with
R. For details, the reader is referred to the original article.
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Consequences of Order Completeness

In this chapter we shall investigate some consequences of order completeness.
We remind the reader that there will be no further need to adhere to the
special notations of Sect. 6.4, and we shall therefore revert to our original
notations, which will apply henceforth to all order complete spaces.

The key to the results of this chapter is the existence of timelike curves.
Section 8.1 gives a constructive proof of this assertion. Timelike curves are
then used to establish other properties of order complete spaces, leading to the
main result that open D-intervals in locally compact order complete spaces
have a differentiable structure. This is achieved in Sect. 8.4.

The first countability Assumption 6.5.1 is not invoked in the present chap-
ter, but the local precompactness Assumption 6.4.1 is used quite explicitly in
Sect. 8.3.

8.1 Timelike Curves

We begin with the definition of timelike curves.

Definition 8.1.1 Let U be a D-set, x, y ∈ U, x � y. A continuous curve
Θ : [0, 1] → U such that Θ(0) = x, Θ(1) = y is called a timelike curve iff
t1, t2 ∈ [0, 1], t1 < t2 implies that Θ(t1) � Θ(t2). �

In this section we shall establish the existence of timelike curves. The
standard maps ρ and σ which were defined in 5.1.2 will play a central role in
this process. Examination of the definition (Def. 5.1.2) and the fundamental
properties (Propositions 5.1.3 and 5.1.4) of the maps ρ and σ shows that they
carry over unchanged to order complete spaces. As the proof of existence of
timelike curves is purely constructive, we shall present it as a construction
rather than as a theorem.

The construction is a simplified version of the one given in [11], the simpli-
fication arising from the fact that we are dealing with order complete spaces,

H.-J. Borchers and R.N. Sen: Mathematical Implications of Einstein–Weyl Causality,
Lect. Notes Phys. 709, 103–127 (2006)
DOI 10.1007/3-540-37681-X 8 c© Springer-Verlag Berlin Heidelberg 2006
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which was not assumed in [11].1 The accompanying diagrams (Figs. 8.1, this
page and 8.2, page 106) have been modified accordingly.

Let U be a D-set, a, b ∈ U and a � b. Choose two different points p, q ∈
S(a, b), and consider the closed light ray sections l[a, p] and l[a, q]. Since l[a, p]
and l[a, q] are homeomorphic to the interval [0, 1] ⊂ R, we may parametrize
them as follows.

Let x, y be the generic points on the segments l[a, p] and l[a, q] respectively.
We assign to x the coordinates (α, 0) and to y the coordinates (0, β), where
α, β ∈ [0, 1] ⊂ R. Then a = (0, 0), p = (1, 0) and q = (0, 1). We set b = (1, 1)
(Fig. 8.1), and proceed as follows:
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2
)

( 1
2
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2
)p = (1, 0) q = (0, 1)

Fig. 8.1. Construction of timelike curves: Step 1

1. a) Define the point (1
2 , 1) ∈ l[q, b] by

(1
2 , 1) = βC+

(1/2,0) ∩ l[q, b]

and draw the light ray segment l[(1
2 , 0), (1

2 , 1)].

1 The construction of [11] was based on the assumption that light rays were com-
plete, i.e., locally homeomorphic with R; no assumption was made regarding the
completeness or order completeness of M itself. As a result, considerable effort
had to be invested to show that the “b-irrational points” (terminology of [11]) on
timelike curves did, in fact, belong to M . This problem does not arise if M is
assumed to be order complete.
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b) Define the points

(1
2 , 1

2 ) = βC+
(0,1/2) ∩ l[(1

2 , 0), (1
2 , 1)]

and
(1, 1

2 ) = βC+
(1/2,1/2) ∩ l[p, b]

and draw the segments l[0, 1/2] and l[(1/2, 1/2), (1, 1/2)] (Fig. 8.1).
In the figure, the segment l[(1/2, 1/2), (1, 1/2)] has been dotted, to
indicate that this segment and the segment l[(0, 1/2), (1/2, 1/2)] may
belong to different light rays; due to the cushion problem,2 the two
light rays l(0,1/2),(1/2,1/2) and l(1/2,1/2),(1,1/2) need not coincide.

It follows immediately from the construction that

(0, 0) � ( 1
2 , 1

2 ) � (1, 1) .

c) Finally, use the standard maps

ρ : l[(1
2 , 0), (1, 0)] → l[(1

2 , 1
2 ), (1, 1

2 )]

and
ρ : l[(0, 1

2 ), (0, 1)] → l[(1
2 , 1

2 ), (1
2 , 1)]

to define numerical coordinates on the ranges l[(1/2, 1/2), (1, 1/2)] and
l[(1/2, 1/2), (1/2, 1)] according to the rules ρ(α) = α and ρ(β) = β
respectively.

2. We now have a figure consisting of four light ray quadrangles (Fig. 8.1),
but only two of them will play a role in the next step. These are the
quadrangles defined by the vertices

Lower quadrangle : (0, 0), (0, 1
2 ), (1

2 , 1
2 ), (1

2 , 0) ;

Upper quadrangle : (1
2 , 1

2 ), (1
2 , 1), (1, 1), (1, 1

2 ) .

Notice that the light ray segments forming the lower sides of both these
quadrangles have numerical coordinates defined on them. Therefore the
procedure of the first step can be repeated in both of them. What one
obtains by repeating the procedure is shown in Fig. 8.2. In the figure we
have, for clarity, deleted the light ray segments and coordinates of the
points from step 1 that played no role in step 2. We are then left with a
figure with four light ray quadrangles along the “diagonal” connecting a
with b, with the corresponding vertices ordered as follows:

(0, 0) � (1
4 , 1

4 ) � ( 1
2 , 1

2 ) � ( 3
4 , 3

4 ) � (1, 1) .

2 The cushion problem is as follows: In an arbitrary order complete space, the ray
that joins the points (0, 1/2) ∈ l[a, q] and (1, 1/2) ∈ l[p, b] need not intersect the
ray segment l[(1/2, 0), (1/2, 1)]; this problem will be discussed in Chap. 9.
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)
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)
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)
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)
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Fig. 8.2. Construction of timelike curves: Step 2

By iterating this procedure, we obtain a countable set of points

Θ0 =
{(

2k + 1
2m

,
2k + 1

2m

)∣∣∣∣ k = 0, . . . , 2m−1 + 1, m ∈ N+

}
which is linearly ordered by �. Set

xα =
(

2k + 1
2m

,
2k + 1

2m

)
,

where α is a double index; α = (k,m). Then, if α, γ are such that xα, xγ ∈ Θ0

and xα � xγ , these exists xβ ∈ Θ0 such that xα � xβ � xγ . The completion
of Θ0 is the sought-for timelike curve Θ[a, b] ⊂ M connecting a with b. It
remains to show that there are no gaps in this curve.

To do this, let k, m be fixed. Although the point

θ =
(

2k + 1
2m

,
2k + 1

2m

)
∈ Θ0

is not connected to the points(
2k + 1

2m
, 0

)
∈ l[a, p],

(
0,

2k + 1
2m

)
∈ l[a, q]

by light rays, they are so connected, by construction, by descending l-
polygons. Figure 8.3 shows these polygons explicitly for the points θ =
(1/4, 1/4), (1/2, 1/2) and (3/4, 3/4). (In the figure, the vertices have been re-
labelled for simplicity.) For example, the points p1 and w2 are connected by
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a = (0, 0)

b = (1, 1)

a3

a2

a1

w1

w2

p

p1

p2

p3

q

u1

u2 v1

v2

v3

b1

b2

q1

Fig. 8.3. Timelike curves: Reading off the maps Υx and Υy

the ascending l-polygon P (p1, v3, w2), the points a3 and w2 by the ascending
l-polygon P (a3, w1, w2). Again, by construction, there exist order-preserving
homeomorphisms

Υx : l

[
a,

(
0,

2k + 1
2m

)]
→ P

[(
0,

2k + 1
2m

)
, . . . ,

(
2k + 1

2m
,

2k + 1
2m

)]
,

Υy : l

[
a,

(
2k + 1

2m
, 0

)]
→ P

[(
2k + 1

2m
, 0

)
, . . . ,

(
2k + 1

2m
,

2k + 1
2m

)]
.

(8.1)
These homeomorphisms are glued together from pieces that are composite
maps ρ◦ρ◦ · · · ◦ρ, and are cumbersome to write down explicitly. (The special
cases

Υx : l[a, a3] → P (p1, v3, w2) ,

Υy : l[a, p1] → P (a3, w1, w2)

of the maps (8.1) may be read off Fig. 8.3 in a straightforward manner.) The
fact that the maps Υx, Υy are homeomorphisms establishes that there are no
gaps in Θ[a, b], for a gap in Θ[a, b] would imply a gap in l[a, p], or a gap in
l[a, q], or both, which would contradict the known structure of closed light ray
segments.

8.1.1 Topology of Θ[a, b]

Since the curve Θ[a, b] is continuous in the geometrical sense, the following
result holds:
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Theorem 8.1.2 (Local structure of Θ(t)) The topology of the order � on
a timelike curve Θ[a, b] as defined above is the same as the subspace topology
it inherits from M ; Θ is locally homeomorphic with R.

Proof: By construction, there is an order-preserving bijection between the
set {Θ(t)|0 ≤ t ≤ 1} furnished with the order �, and the closed real interval
[0, 1]. An open order interval contained in I(a, b) is either disjoint from the
continuous curve Θ, or else intersects it on an open arc. The subspace topology
on Θ is therefore the same as the topology generated by the order � on it.

�

8.2 Parametrization of D-Intervals

The aim of this and the following section is to establish that the interiors
of D-intervals in locally compact ordered spaces are homeomorphic with the
interiors of double cones in some finite dimensional Minkowski space. The
proof requires several steps. In this section we shall establish those results
that do not make explicit use of local compactness. We begin with a prelimi-
nary lemma:

Lemma 8.2.1 Let M be an order complete space, U ⊂ M a D-set, a, b ∈
U, a � b and Θ[a, b] a timelike curve connecting a and b. Then, for any point
w ∈ I(a, b), there exist points p, q ∈ Θ(a, b), p � q such that3

βC−w ∩ Θ(a, b) = {p} ,

βC+
w ∩ Θ(a, b) = {q}

so that
w ∈ S(p, q) .

Proof: Since, by Theorem 8.1.2, the subspace topology on Θ is the same
as the order topology determined by the order �, the intersection of Θ[a, b]
with any closed order interval properly contained in I[a, b] is either empty or
a closed segment of Θ[a, b]. For any w ∈ I(a, b), the order interval I[w, b] has
nonempty interior and is properly contained in I[a, b]. Therefore there exists
a point q �= b such that Θ[a, b] ∩ I[w, b] = Θ[q, b]. The point q cannot be an
interior point of I[w, b]; if it were, then one would have I(w, q) ∩ Θ[a, b] = ∅,
contradicting the fact that Θ[a, b] is a continuous curve. Therefore q ∈ βI[w, b].
Next, q /∈ βC−b , for q ∈ βC−b would imply that λ(q, b), contradicting the fact
that q ∈ Θ(a, b). Hence q ∈ βC+

w .
The existence of the point p is established similarly. It follows immediately

that w ∈ S(p, q). �

3 Θ(a, b) denotes the curve Θ[a, b], minus the end-points.
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8.2.1 Boundaries of D-intervals. The Jordan-Brouwer
Separation Property

The sphere Sn−1 ⊂ Rn separates Rn into an inner and an outer part that have
Sn−1 as their common boundary, and every simple curve that joins a point in
the inner part with a point in the outer part intersects this common boundary.
For n = 2, this is the classical Jordan curve theorem; for n > 2, it is known
as the generalized Jordan curve theorem [124, 125]. For technical reasons, one
works with the one-point compactifications Sn of Rn in algebraic topology;
the analogous results for Sn are known as the Jordan-Brouwer separation
theorems [74, 78, 100]. It turns out that boundaries of D-intervals in order
complete spaces have the same property.

Light ray segments and timelike curves cannot not have self-intersections;
they are necessarily simple.4 However, this is not true of spacelike curves, and
one has to make the distinction.

Definition 8.2.2 (Spacelike curves)

Let M be an order complete space. A spacelike curve in M is a continuous
map C : [0, 1] → M such that any two distinct points C(t), C(t′) on it are
spacelike to each other. A spacelike curve is called simple if it is, additionally,
a simple curve, i.e., if it is a homeomorphism onto the co-domain. �

Theorem 8.2.3 Let M be an order complete space, U ⊂ M a connected
D-set and I[a, b] ⊂ U a closed D-interval in U , with a � b.

1. ∂I[a, b] is the common boundary of I(a, b) and U \ I[a, b].
2. Any simple curve that exits the interior of I[a, b] intersects the boundary

of I[a, b].

Proof:

1. Let x ∈ ∂I[a, b], and let lout
x be a (forward or backward) light ray from x

out of I[a, b]. Then x is a limit point of l(x, v) ⊂ (U \ I[a, b]) (or l(u, x) ⊂
(U \ I[a, b]), as the case may be).

2. Let C[p, q] be a simple curve such that p ∈ I(a, b) and q ∈ U \ I[a, b]. Let
x ∈ X = C[p, q] ∩ I(a, b) and z ∈ Z = C[p, q] \ I[a, b]. Define now

Y =
⋂

x∈X
z∈Z

Θ[x, z] .

Then Y is nonempty and consists of a single point, Y = {y}, and y ∈
∂I[a, b]. �

4 Since a curve is, by definition, a continuous image of the real interval [0, 1], a
light ray segment in an order complete space is a curve. However, nothing in our
axioms prevents light rays or timelike continua from being homeomorphic with
the long line.
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Observe that the above proof will fail unless U is order complete (cf. Sect.
7.1). The result is readily extended to the one-point compactification of M ,
if M is locally compact. We omit the details. Regarding the analogy with the
Jordan curve theorem or with the Jordan-Brouwer theorems, one should bear
in mind that not every double cone in M is a D-interval.

8.2.2 2-cells in D-intervals

Let M be an order complete space, I[a, b] ⊂ M a D-interval, Θ[a, b] a timelike
curve connecting a with b, and p a point on S(a, b). There exists a natural
homeomorphism between l[a, p] and Θ[a, b], which may be displayed as follows.
Define

ϑ : l[a, p] → Θ[a, b] (8.2)

by
r ∈ l[a, p], ϑ(r) = βC−r ∩ Θ[a, b] . (8.3)

By Lemma 8.2.1, the point ϑ(r) exists and is unique. The map ϑ is clearly
bijective and order-preserving, and therefore a homeomorphism. Define now

F [a, b; p] =
⋃

r∈l[a,p]

l[r, ϑ(r)] . (8.4)

Our aim in this section is to prove that F [a, b; p] is a 2-cell, i.e., a homeo-
morphic image of a 2-simplex. We shall use the following notations:

∂F [a, b; p] = l[a, p] ∪ l[p, b] ∪ Θ[a, b]

F (a, b; p) = F [a, b; p] \ ∂F [a, b; p] .
(8.5)

The notation ∂F [a, b; p] will be justified below.
We begin by observing that if z ∈ F [a, b; p], then the two intersections

η = βC+
z ∩ Θ[a, b] ,

ζ = βC−z ∩ Θ[a, b]
(8.6)

are uniquely defined points, with η = ζ iff z ∈ Θ[a, b]. Since Θ[a, b] is home-
omorphic with [0, 1], it is metrizable. We choose a metric on Θ[a, b], denoted
by |., .|, so that |a, b| = 1. Using this metric, we set up two different ways of
identifying a point on Θ[a, b] (Fig. 8.4):

1. By its distance from the vertex b. ηα will denote the point on Θ[a, b] at
the distance α from b.

2. By its distance from the vertex a. ζβ will denote the point on Θ[a, b] at
the distance β from a.
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β

Fig. 8.4. 2-cells in order intervals

Then 0 ≤ α, β ≤ 1. For any point on Θ[a, b], α + β = 1, so that ηα = ζ1−β .
The point z ∈ F [a, b; p] will be assigned the coordinates

z = (α, β) , (8.7)

where (see Fig. 8.4) α and β are defined by the intersections

ηα = βC+
z ∩ Θ[a, b] ,

ζβ = βC−z ∩ Θ[a, b] .
(8.8)

Note that in (8.6), z stands for the generic point in F [a, b; p] whereas the
left-hand sides of (8.8) are defined for a specific z.

We now set
ξα = βC−ηα ∩ l[a, p] . (8.9)

It follows from the definition of F [a, b; p] that

z ∈ lξα,ηα .

In the following, we shall use the shorthand notation lα to denote the light
ray lξα,ηα .

The coordinate lines α = const are clearly the light ray segments lα[ξα, ηα].
On lα[ξα, ηα], β varies from 0 to 1−α. From (8.8) we see that the coordinate
lines β = const are the sets
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Cβ = F [a, b; p] ∩ βC+
ζβ . (8.10)

On Cβ , α varies from 0 to 1 − β.
Equations (8.7) and (8.8) define an injective map Π ′ : F [a, b; p] → R2.

With the standard Cartesian coordinates on R2, we see that Π ′ maps F [a, b; p]
onto the triangle Δ with vertices (0, 0), (1, 0) and (0, 1). That is, the map

Π : F [a, b; p] → Δ , (8.11)

which is the same as Π ′, but with the co-domain restricted to Δ, is bijective.
It should, however, be noted that the length scales on l[a, p] and Θ[a, b] are
not identical. Therefore, after the coordinates have been assigned, we should
“forget” the scale on Θ[a, b].

Let α ∈ (0, 1) be fixed, and δ > 0 such that α ± δ ∈ (0, 1). Then
∩δl[ξα+δ, ξα−δ] = ξα and ∩δΘ[ηα+δ, ηα−δ] = ηα. Furthermore, ξα+δ � ηα−δ

for all δ.

Lemma 8.2.4 ⋂
δ

I[ξα+δ, ηα−δ] = l[ξα, ηα] .

Proof: Let L = ∩δI[ξα+δ, ηα−δ]. As l[ξα, ηα] ⊂ I[ξα+δ, ηξ−δ] for all δ, it
follows that

l[ξα, ηα] ⊂
⋂
δ

I[ξα+δ, ηα−δ] .

We shall assume that the intersection L contains a point w /∈ l[ξα, ηα], and
derive a contradiction.

Since M is regular, the closed set l[ξα, ηα] can be separated from the point
w by disjoint open sets V ⊃ l[ξα, ηα] and W 
 w. The light ray segment l[a, p]
and the timelike curve Θ[a, b] intersect V in an open light ray segment and
an open timelike arc respectively, that is the intersections l(a, ξα) ∩ V and
Θ(ηα, b) ∩ V are nonempty. Therefore one can find a pair of points ξα+δ0 ∈
l[a, p] and ηα−δ0 ∈ Θ(ηα, b) such that I[ξα+δ0 , ηα−δ0 ] ⊂ V , i.e, I[ξα+δ0 , ηα−δ0 ]
is disjoint from W . Therefore w /∈ L, which is the desired contradiction. �

With the help of this lemma, we can prove the following result:

Theorem 8.2.5 The subset F [a, b; p] ⊂ U defined in (8.4) has the following
properties:

1. Let z ∈ F [a, b; p] and u, v ∈ I(a, b) such that u � z � v Then the inter-
sections F [a, b; p] ∩ I(u, z) and F [a, b; p] ∩ I(z, v) are nonempty.

2. Every ray segment lα[ξα, ηα] ⊂ F [a, b; p] separates F [a, b; p] into two dis-
joint regions that have lα[ξα, ηα] as their common boundary.

3. No proper subsegment of any lα[ξα, ηα] separates F [a, b; p] into two disjoint
regions.
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Proof:

1. Let z ∈ F (a, b; p), u, v ∈ I(a, b) and u � z � v. Then z ∈ lα0(ξα0 , ηα0)
for some α0. We shall prove that for any such v, there is a ray segment
lα(ξα, ηα) that intersects I(z, v).
Let ηα1 = βC+

v ∩ Θ(a, b). Then z � ηα1 , α1 < α0 and ηα1 � ηα0 .
Consider the D-interval I[z, ηα1 ] and choose α such that α1 < α < α0.
Then ηα ∈ I(z, ηα1), so that every backward ray from ηα intersects βC+

z .
This includes the ray segment l[ξα, ηα], where ξα = βC−ηα∩l[a, p], as before.
Note that ξα0 <ll ξα, and therefore ξα is spacelike to z.
Mutatis mutandis, the proof applies to the statement that there is a ray
segment l(ξα′ , ηα′) that intersects I(u, z).

2. For ξα, ηα as in the statement of the theorem, the two regions of F [a, b; p]
are F [a, b; p] ∩ C+

ξα and F [a, b; p] ∩ C−ηα . The intersection l[ξα, ηα] of the
cones C+

ξα and C−ηα is the common boundary of these two regions.
3. It is easy to see (for example) that there is an l-polygon, or a segment of

the timelike curve Θ[a, b], or a concatenation of the two, connecting any
two points of F [a, b; p] \ lα[ξα, zα] for any α and any z <ll ηα. �

The second part of this theorem establishes that F [a, b; p] is, in common
parlance, a continuous surface.

Lemma 8.2.6 The sets Cβ defined by (8.10) are continuous simple curves.

Proof: Cβ is the image of an injective map from l[ξ1−β , ξ0], in coordinates
[0, 1 − β], into F [a, b; p], and this map is continuous. For suppose that it
is discontinuous at α0 ∈ [0, 1 − β]. Then the images of either the sections
[0, α0], (α0, 1 − β] or the sections [0, α0), [α0, 1 − β] do not meet. In either
case, l[ξα, ηα] is not the common boundary of the two regions of F [a, b; p]
defined by α < α0 and α > α0, which contradicts Theorem 8.2.5. Cβ is simple
because βC+

ζβ intersects each light ray segment lα[ξα, ηα] at most once. �
With this preparation behind us, we are finally able to reach the goal of this

section, which is to prove that the map Π defined earlier is a homeomorphism.
The topology on F [a, b; p] is the subspace topology inherited from M ; that on
Δ is the subspace topology inherited from R2.

Theorem 8.2.7 The map Π : F [a, b; p] → Δ defined by (8.11) is a homeo-
morphism, i.e., F [a, b; p] is a 2-cell.

Proof: Define

R = {z = (α, β)|α1 < α < α2, β1 < β < β2} ,

where α1, α2, β1, β2 ∈ (0, 1), α + β < 1, and call it an “open rectangle” in
F (a, b; p). Next, let UF be the (nonempty) intersection of a D-interval U with
F . It is easily seen that given R and UF such that R ⊃ UF , one can find an
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open rectangle R′ ⊂ F (a, b; p) such that R ⊃ UF ⊃ R′. This means that the
family of open rectangles is a base for the topology of F (a, b; p).

By definition, Π and Π−1 map open rectangles in F (a, b; p) bijectively to
open rectangles in Δ and vice versa, and boundaries to boundaries. Therefore
Π, Π−1 restricted to the interiors are homeomorphisms. Therefore they map
Cauchy sequences to Cauchy sequences. The result follows. �

8.2.3 Cylindrical Coordinates on D-intervals

In this section we shall establish several decisive results, using a system of
cylindrical coordinates on the D-interval I[a, b] for a given timelike curve
Θ[a, b]. This coordinate system is defined below.

We begin by mapping Θ[a, b] on the real interval [−1, 1], so that

a �→ −1 ,

b �→ +1 .
(8.12)

Let now w ∈ I[a, b], u = C−w ∩Θ(a, b) and v = C+
w ∩Θ(a, b). We shall use the

same letters u and v to denote the real coordinates of the points u and v on
Θ[a, b]. Then

−1 ≤ u ≤ v ≤ 1 .

If w ∈ Θ[a, b], then u = v. If w = b, then u = v = 1, and if w = a, then
u = v = −1. We define

r =
v − u

2
,

h =
v + u

2
.

(8.13)

Then
−1 ≤ h ≤ 1 ,

0 ≤ r ≤ 1 − |h| .
(8.14)

The variables h and r will be called the level and the radius, respectively.
Note that r = 0 implies that w ∈ Θ[a, b], and that the upper bound for r is a
consequence of u ≤ v.

For fixed h, the sets of constant nonzero r are the hyperspheres S(u, v). To
complete the parametrization of I[a, b], we have to parametrize S(u, v). For
this we need to know more about S(a, b) than we presently do, for example
that S(a, b) is a topological manifold. However, for our immediate aims, which
are to establish the homogeneity Property 8.2.9 and the homotopy Property
8.2.11, it suffices to use the second homogeneity Property 5.4.5: If a, b ∈ U
and a′, b′ ∈ U ′, where U, U ′ are D-intervals, then S(a, b) and S(a′, b′) are
homeomorphic with each other, and therefore to a fiducial hypersphere in M
which we shall denote by S.
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It follows from the definitions of u, v and F [a, b; p] that the intersection
S(u, v) ∩ F [a, b; p] is a unique point. It is, in fact, the point w that was used
to define u and v earlier, i.e.,

S(u, v) ∩ F [a, b; p] = w .

Let φ(p) be a set of real coordinates that specify the point p ∈ S(a, b) uniquely.
Then, in view of the second homogeneity property, we may demand that for
every u and v points on the hyperspheres S(u, v) be assigned coordinates that
satisfy the following condition:

φ(w) = φ(p) ∀ w ∈ F [a, b; p]. (8.15)

In other words, we require the φ(w) to be constant on F [a, b; p]. We shall
generally write (8.15) in the abbreviated form

φ(w) = φ(p) = const ∀ w ∈ F [a, b; p] . (8.16)

Since M is a Tychonoff space (Theorem 4.6.3), we may assume that the func-
tions φ(p) are continuous in p in any coordinate chart. The (affordable) price
one pays is that more than one chart will be needed to cover S.

Thus a point w ∈ I[a, b] may be specified as

w = {h; r, φ(w)} . (8.17)

For r > 0, the specification is unique. For r = 0, the coordinate φ(p) does
not play a role, i.e., all values are equivalent. The parameters h, r and φ are
continuous functions of w.

Let T be the triangle in the (r, h) plane with vertices (0,−1), (0, 1) and
(1, 0), and S the fiducial hypersphere. Then the parameter space for the para-
metrization (8.17) of I[a, b] may be written as

K = (T × S)/R, (8.18)

where R is an equivalence relation on T ×S that identifies all points {h; 0, φ}
with h fixed, but does nothing for r �= 0. Points in T × S will be denoted by
{h; r, φ} as in (8.17), and those on K by [h; r, φ]. Then the map I[a, b] → K
defined by

w �→ [h; r, φ(w)] (8.19)

will be bijective.

Theorem 8.2.8 The map f : I[a, b] → K defined by (8.19) is a homeomor-
phism.

Proof: f is continuous because the functions h, r and φ are continuous. The
proof that f−1 restricted to {h; r, φ}|r > 0} is continuous is similar to the
proof of Theorem 8.2.7. The extension to I[a, b] and K is straightforward, if
slightly tedious. We omit the details. �
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8.2.4 Homogeneity and Homotopy of D-intervals

We are now in a position to establish the following key results on D-intervals:

Theorem 8.2.9 (Third homogeneity property: I[a, b])

Let I[a, b] and I[a′, b′] be D-intervals with nonempty interiors. Then I[a, b]
and I[a′, b′] are homeomorphic to each other.

Proof: Follows from the fact that both I[a, b] and I[a′, b′] are homeomorphic
with K. �

Theorem 8.2.10 Let I[a, b] be a closed D-interval with nonempty interior,
and let o be any point in I(a, b). Then I[a, b] is contractible to {o}.

Proof: Recall that the concatenation of two timelike curves Θ[a, o] and Θ[o, b]
is again a (continuous) timelike curve. Map Θ[a, o] onto [−1, 0] and Θ[o, b]
onto [0, 1]. Then the point p ∈ I[a, b] can be parametrized as p = [r, h, φ],
with o = [0, 0, φ]. The map

p = p(1) �→ p(t) = [th; tr, φ] , (8.20)

defined for every t ∈ [0, 1], displays the required contractibility. �
Note that φ remains constant during the contraction. Each point p on

∂I[a, b] is joined to the point o by a continuous curve. The paths of distinct
points on ∂I[a, b] meet only at o, and the collection of all these paths fills
I[a, b].

It follows easily from Theorem 8.2.10 that:

Theorem 8.2.11 (D-intervals are homotopically trivial)

Let I[a, b] be a closed D-interval. Then I[a, b] is homotopically trivial.

Proof: The result is trivially true if a = b. If a �= b then, since ∃ a D-set
U ⊃ I[a, b], we can find points a0, b0 ∈ U \ I[a, b] such that a0 � a � b � b0.
Then, by Theorem 8.2.10, I[a0, b0] is contractible to any point o ∈ I(a0, b0).
The result follows from the fact that I[a, b] ⊂ I(a0, b0). �

8.2.4.1 Spacelike Hypersurfaces

Under the contraction (8.20), the path traced by any point p ∈ S(a, b)
is a spacelike curve. If I[a, b] is parametrized as in (8.12) and (8.13), the
paths {p(t)|p ∈ S(a, b), 0 ≤ t ≤ 1} lie on the bounded hypersurface
H̄ = {[0; r, φ]|r ∈ [0, 1], φ ∈ S(a, b)}. We shall denote by H the subset of
H̄ defined by H = {[0; r, φ]|r ∈ [0, 1), φ ∈ S(a, b)}. Both H̄ and H will be
called, indifferently, the level surface h = 0.

On H, the condition r = const = r0 ∈ (0, 1) defines a hypersphere which
we shall denote by Sr0 . Sr0 separates H into an outer and an inner part that
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have Sr0 as their common boundary. Although the result is fairly obvious
by now, it is of independent interest,5 and therefore we shall give a detailed
statement and proof.

Theorem 8.2.12 Let M be an order complete space and I[a, b] ⊂ M, a � b
a closed D-interval. Let w ∈ I[a, b] be parametrized as in (8.17), and let H ⊂
I(a, b) be the level surface h = 0. Then: 1) For 0 < r0 < 1, the hypersphere
Sr0 separates H into two disjoint parts

Hin = {[0; ρ, φ(w)]|ρ < r0}

and
Hex = {[0; ρ, φ(w)]|ρ > r0}

that have Sr0 as their common boundary. 2) Furthermore, any continuous
curve in H that joins p ∈ Hin with q ∈ Hex intersects Sr0 .

Proof: Let z ∈ Sr0 , u ∈ βC−z ∩ Θ[a, b], v ∈ βC+
z ∩ Θ[a, b]. Then

Hin = H ∩ I(u, v),

Hex = H ∩ (I[a, b] \ I[u, v])

and
Sr0 = H ∩ ∂I[u, v] .

This establishes assertion 1).
Assertion 2) is clearly true for the radial lines φ = const. So let C = C[p, q]

be a closed segment of a continuous spacelike curve that joins a point p ∈ Hin

with a point q ∈ Hex. By definition, C is homeomorphic to a closed interval
[α, β] ⊂ R. Let x ∈ Cin = C ∩ Hin and z ∈ Cex = C ∩ Hex. The intersection⋂

x∈Cin
z∈Cex

C[x, z]

consists of a single point y, and y ∈ Sr0 . �

8.3 Locally Compact Spaces

In Sect. 6.7 we remarked that many of the results of Chap. 6 could be valid
without the assumption of local precompactness. If that were the case, the
same would be true of the results of the preceding section. However, the
results that follow, leading up to and including the results on the differentiable
structure, are of a different kind. As will be seen below, their proofs depend
5 The interest here is the following. It may be possible to establish analytical or

topological properties of Rn or Sn by imposing an auxiliary partial order structure
on these spaces.
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critically upon the local compactness condition. The methods used cannot
be extended readily to “infinite-dimensional” situations, and therefore it is
difficult to see which of the results, if any, may continue to hold. In order
to stress this point, the hypothesis of local compactness will be mentioned
explicitly in the following.

We shall establish that open D-intervals in locally compact order complete
spaces have a differentiable structure by embedding them as open double
cones in some finite-dimensional Minkowski space. Our point of departure is
the following result:

Theorem 8.3.1 A locally compact order complete space has a finite covering
dimension.

Proof: In a locally compact space M , a closed D-interval I = I[a, b] is com-
pact. Therefore every open cover of it has a finite subcover. Let O be an open
cover of I and j(O) the size of a finite subcover of it. Let k + 1 = min j(O),
the minimum being taken over all finite subcovers of all open covers of I. Since
I is connected, k ≥ 3.6 Since every closed D-interval is homeomorphic with
every other closed D-interval, k is independent of the D-interval.

The number k is the covering or topological dimension of M . �
Next, we recall some results from the theory of embedding and metrization

of topological spaces:

1. A compact Hausdorff space is metrizable [77].
2. A metrizable space of topological dimension k can be embedded in Rn,

where n = 2k + 1 [77, 52]. This value of n is the best possible. However:
3. The topological dimension of a compact m-dimensional topological mani-

fold is exactly m [77, 52].7

The only useful conclusion that we can draw from the above results is that
a D-interval in a locally compact order complete space can be embedded in Rn

for some finite n. For n to equal the topological dimension of the D-interval,
the result quoted requires the D-interval to be a topological manifold, which
begs the question. In a manifold, every point has a small neighbourhood that
is homeomorphic with a small neighbourhood of every other point, and open
D-intervals have this homogeneity property (Property 8.2.9). However, in a
finite-dimensional manifold, every point has an open neighbourhood that is
homeomorphic with an open set in some RN , and this is the crucial property
that we are still missing.
6 Recall that we have excluded the one- and two-dimensional cases.
7 Recall that a uniform space is metrizable iff it is Hausdorff and second countable

(Theorem A.5.4). However, for the moment we are interested in embeddings in Rn

with finite n; for this second countability is not enough. In some sense, the second
countability condition is more restrictive globally than locally; Hilbert space, for
example, is second countable, but the long line is not. See the articles by Kneser
[59, 61].
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Let M be a locally compact order complete space of topological dimension
k. We take an embedding of M into R2k+1 and the assignment (8.19) of cylin-
drical coordinates to points w ∈ I[a, b] ⊂ U ⊂ M as described in Sect. 8.2.3.
Then:

Lemma 8.3.2 Let i be an embedding of I[a, b] in R2k+1. Then i maps the
paths of points p ∈ ∂I[a, b] under the homotopy (8.20) onto straight lines.

Proof: Since φ remains constant during a contraction, the path {p(t)|t ∈
[0, 1]} traced by p during the homotopy (8.20) lies on the 2-cell F [a, b; p].
Formula (8.20) shows explicitly that i maps the cell F [a, b; p] into the plane
in R2k+1 determined by h(p) and r(p), and the path of p onto a straight line
in this plane. �

8.3.1 Reconstruction of a Local Minkowski Structure

Let o be the point [0; 0, φ] ∈ I[a, b] and pγ ∈ S(a, b). Set i(o) = O and
i(pγ) = Pγ . The points O and Pγ determine a vector, which we shall denote
by vγ , in R2k+1. Let

V = {vγ |pγ ∈ S(a, b)} ,

and set

H = {a1v1 + a2v2 + · · · + akvk|aj ∈ R, vj ∈ V, k ∈ N} .

Then H is the linear span of the vectors of V and is a subspace of R2k+1, of
dimension ≤ 2k. We shall call it the hyperplane H. Set dim H = N − 1. It
follows immediately that:

dim i(I[a, b]) = N . (8.21)

Then the homogeneity Property 8.2.9 of the interior of I[a, b] implies that
N = k, the topological dimension of M . Thus I(a, b) is embedded as an open
set in RN .

We now define the indefinite form x2
0 − x2

1 − · · · − x2
N−1 on RN to make

it into N -dimensional Minkowski space, which we shall denote by M. Let A
and B be the points (−1, 0, . . . , 0) and (1, 0, . . . , 0) respectively in M, and
IM[A,B] the double cone C+

A ∩C−B . The intersection ∂C+
A ∩∂C−B is the sphere

SN−2(1; O) of unit radius with origin O which lies on the hyperplane x0 = 0.
We introduce cylindrical coordinates on RN with the x0-axis as the axis of
the cylinder and O as the origin. We shall denote a point in M by [h; r, φ]M,
where h and r are the standard level and radius variables, and φ specifies a
point on an Euclidean hypersphere SN−2. The assignment of the coordinate
φ satisfies the condition satisfied by φ in (8.15). The map

[h; r, φ] �→ [h; r, φ]M (8.22)

is a homeomorphism of I[a, b] ⊂ M onto its range in IM[A,B].
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8.4 The Differentiable Structure

Theorem 8.4.1 The interior of a D-interval in an order complete space M
is C∞-diffeomorphic with RN , where N is the dimension of M .

Proof: This is just a restatement of the known fact that the interior of a
double cone in MN carries a C∞-differential structure. �

Example 8.4.2 Consider two copies M and M ′ of the plane R2, with its
usual differentiable structure. Let M be furnished with the usual Minkowski
structure.8 Define the map f : M → M ′ as follows:

f(x, y) =
{

(x, y), y ≤ 0 ;
(x + αy, y), y > 0 ,

where α > 0. This map is a homeomorphism. If we define light rays in M ′ to
be the images under f of light rays in M , the space M ′ becomes an ordered
space, and the spaces M and M ′ are order-equivalent (as defined in Sect. 4.7).
However, light rays in M ′ are not differentiable where they intersect the X-
axis.

This example reveals that the notion of order equivalence is not a diffeo-
morphism invariant.

We have to distinguish between the differentiability of a manifold, and of
the order structure upon it. We begin with a definition that makes the latter
concept precise.

Definition 8.4.3 Let M be an ordered space that is also a differentiable
manifold. We shall say that the order structure on M is differentiable if the
differentiable structure on M induces a differentiable structure on (i) light
rays, (ii) mantles of light cones (excluding the vertices), and (iii) spacelike
hyperspheres in D-sets. �

We saw in Theorem 8.4.1 that every open D-interval in a locally compact
order complete space M carries a differentiable structure. However, this does
not imply that the differentiable structures on two open D-intervals in M
with non-empty intersection are compatible.9 It cannot be expected that in
a setting as general as the present one (of order complete spaces) a local
differentiable structure would imply a global one, or that the order structure
itself would be differentiable everywhere.

8 In two-dimensional Minkowski space, light rays are the straight lines x − y = c
and x + y = c, where c ∈ R.

9 Here compatibility has the usual meaning; the transition maps for two overlapping
open D-intervals are related by a diffeomorphism on their intersection.
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8.4.1 Remarks on the Global Differentiable Structure

In Example 8.4.2, an everywhere-differentiable order structure is mapped,
by a order preserving homeomorphism, into one in which light rays are not
differentiable at their intersections with the X-axis. Further insight into the
phenomenon may be obtained by looking at the standard maps ρ and σ which
were defined in Sect. 5.1.1, and which formed the basis of the subsequent
investigations. In Example 8.4.2, the induced maps ρ′ = ρ ◦ f and σ′ = σ ◦ f
on M′, while being continuous, are not differentiable if one of the ray segments
crosses the X-axis.

In any order complete space, a light ray segment is homeomorphic with
an interval on the real line. Therefore the notion of differentiability itself is
always meaningful for the standard maps. A failure of differentiability of the
order structure should therefore manifest itself as a failure of differentiability
of the standard maps, and this would be an intrinsic property of the space
under consideration. Conversely, (it seems reasonable to suggest that) differ-
entiability of the standard maps should allow one to infer the differentiability
of the order structure, and perhaps that of the space itself.

Despite the obstructions for defining a global differentiable structure, there
are indications that one is not very far from such a structure. These indications
are as follows:

1. In Sect. 4.6 we established that an ordered space is a Tychonoff space (The-
orem 4.6.2, Corollary 4.6.3), which means that one can define continuous
functions on it which separate points. If the space is locally compact, we
may construct the C∗-algebra generated by the continuous functions with
compact support. The space itself is characterized by this C∗-algebra.10 By
this construction we obtain all continuous function vanishing at ∂M and at
infinity. Then one can characterize the order structure by monotone func-
tions, which can be constructed from the continuous functions. Monotone
functions on the line are differentiable almost everywhere (see, for instance,
[89]). Since the space is finite dimensional, one can define the tangent space
almost everywhere.

2. Let M be a locally compact order complete space and I[x, y] ⊂ M a
D-interval in it. Let Θ(t), t ∈ [0, 1] be a parametrized timelike curve
joining x and y, with Θ(0) = x and Θ(1) = y. Let a ∈ S(x, y), and define
a(t) = βC−Θ(t) ∩ l+x,a. Embedding M in an n-dimensional Euclidean space,
we can define 1

t (a(t) − a(0)). Taking the limit t → 0 and varying a over
S(x, y), we may define a family of “one-sided tangent vectors” at x, along
the directions of light rays from x. Therefore it seems reasonable to assume
the existence of tangent spaces and cones in it.

10 This is the famous Gelfand isomorphism. For an elementary account of the basic
Gelfand theory, see [99]. More advanced accounts and further material may be
found in [24] and [81].
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3. In physics, one can make only a finite number of experiments. The data
they would provide would be insufficient to distinguish between a space of
continuous but nowhere-differentiable functions and a C(∞) space. There-
fore, from the point of view of physics, no real harm can be done by as-
suming the existence of tangent spaces at every point.

8.4.2 Monotone Functions

We begin with the construction of real-valued functions that are monotonic
with respect to the order <.11

Definition 8.4.4 Let M be an order complete space and f : M → R a
function on M . For given f , we define a monotone nondecreasing function as
follows. Let a ∈ M , and define

fm(a) = sup{b ∈ C−a | f(b)} .

For a < c this implies (by definition of the order <) C−a ⊂ C−c , it follows that
the function fm is monotone nondecreasing. �

One can define monotone nonincreasing functions in the same manner.

Proposition 8.4.5 Let M be order complete and locally compact and let f(a)
be a continuous function with compact support A. Then the function fm(a)
defined above is continuous.

Proof: Let fm(x) a monotone increasing function on M and I[a, b] an order
interval. Then fm(a) ≤ fm(y) ≤ fm(b) for y ∈ I[a, b]. Therefore to prove
that fm(x) is continuous at x it would suffice to show that for every ε > 0
there exists a ∈ τC−x such that fm(a) ≥ fm(x) − ε and b ∈ τC+

x such that
fm(b) ≤ fm(x) + ε.

Let D be a D-set and a, x, b ∈ D such that a � x � b. There exists a
timelike curve Θ(t),−1 ≤ t ≤ 1 connecting a with b such that Θ(0) = x. For
every y ∈ ∂C−x ∩A, let Uy be a neighbourhood of y such that |f(y)−f(z)| < ε

2
for z ∈ Uy. Since A, the support of f(z), is compact, ∂C−x ∩A is also compact
and we can find a finite subcover {Ui} of ∂C−x ∩A. Denote by U the union of
the sets Ui. Let t+ > 0 and t− < 0 such that ∂C−Θ(t±) ∩A ⊂ U . The difference
{A\U}∩C−x belongs to all three sets C−Θ(tj)

∩A, where tj = t+, 0 or t−. This
implies that

sup{f(z); z ∈ C−Θ(t−) ∩ A} + ε ≤ sup{f(z); z ∈ C−x ∩ A}

≤ sup{f(z); z ∈ C−Θ(t+) ∩ A} − ε .

From this it follows that fm(Θ(t−)) + ε ≤ fm(x) ≤ fm(Θ(t+) − ε. The two
inequalities imply that for z ∈ I(Θ(t−), Θ(t+))
11 The order < on M was defined in Chap. 3, Def. 3.2.6, p. 24.
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fm(x) − ε ≤ fm(z) ≤ fm(x) + ε .

This proves the proposition.
�

Remark 8.4.6 If we form the C∗-algebra of bounded continuous functions
generated by the monotone functions defined above, we obtain a compacti-
fication of M . This compactification differs from all the usual ones, because
the functions behave differently in spacelike and timelike directions.

8.4.3 Isotropy

We shall not discuss the construction of directions of the light rays at a point
x ∈ M any further. From now on we shall assume that at every point x ∈ M
there exists a tangent space Tx and that the directions of the light rays at x
generate the mantle of a cone. Because of the convexity axiom this cone will be
strictly convex,12 meaning that its faces are one-dimensional. If we construct
the cone mantle as described at the beginning, i.e, with help of a timelike
curve, then the detailed structure of the cone will depend on the direction of
the timelike curve at x and the time-scale on this curve. This means that the
cone at x is unique up to a linear transformation.

However, this does not imply that the mantle of the cone is smooth. Some
further conditions are required for this mantle to be differentiable. One such
condition is the physically motivated one of local isotropy.

Definition 8.4.7 A finite dimensional order complete space M on which a
tangent space Tx exists at every point x ∈ M will be said to fulfil the condition
of isotropy if on each of these tangent spaces there exists a linear representa-
tion of the rotation group mapping the trace of Cx ⊂ Tx onto itself. By trace
of Cx is meant the cone in Tx discussed above. �

Introducing suitable coordinates in Tx we may give the trace of the cone
Cx ⊂ Tx the form ξ2

0 −
∑

ξ2
i ≥ 0. This implies that every tangent space is

covariant under the Lorentz group extended by dilatations. Hence M carries
a G-structure as defined in Sect. B.2. Therefore M is a differentiable manifold
with a pseudo-Riemannian metric.13

12 The theory of topological vector spaces is developed in textbooks like [91] and
monographs like [92].

13 Since the tangent space exists at every point, M must be once-differentiable,
which implies that it is a C(∞) manifold (see, for example, [50]).
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8.5 Covering Spaces as Ordered Spaces

When light rays are locally homeomorphic with R, one may study the exten-
sion of the order structure if M has a nontrivial fundamental group14 π1 and
one passes to a covering space.

An ordered space with nontrivial π1 can be constructed by excising closed
sets from an ordered space with trivial π1, and this is the picture which we
shall have in mind. Not all spaces with trivial π1 may be able to carry an
order structure. For example, consider the standard order structure on R2.
This structure does not survive the one-point compactification. In general, we
would not expect a compact space to carry an order structure as defined in
this work.

On the other hand, a covering space may be given an order structure
that does not project to an order structure on the base space. Consider the
punctured plane, and define “rays” to be the radii and the circles around the
origin. This structure is locally an order structure, but fails globally because
circles are closed curves. The universal covering of the punctured plane opens
these circles into lines without ends, and therefore the lift of the structure to
the universal covering is an order structure.

Since a covering space is a bundle with a discrete group (and fibre), the
notion of fibre bundles15 provides a convenient approach to the problem.

8.5.1 The Coordinate Transformations

Let X be a topological space and B a covering of it. Let p : B → X be the
projection. Then B is a bundle with base X, projection p and group G, where
G is a subgroup of π1(X) (with the discrete topology). It follows that there
exists a system of coordinate transformations on X with values in G (see Sect.
B.1), i.e., an open cover O = {Vj}j∈J of X by D-sets and continuous maps

gji : Vi ∩ Vj → G (8.23)

which satisfy the conditions (B.2) and (B.3) of Appendix B.
Let W be a connected subset of Vi ∩ Vj . Then, since G is discrete, gji(x)

is constant on W :

gji(x1) = gji(x2) ∀x1, x2 ∈ W . (8.24)

Let now “<” be an order relation on X, i.e., let (X,<) be an ordered
space, and consider the cover O of X. Each Vi, i ∈ O, becomes an ordered
space (Vi, <) by restriction from (X,<), and if (Vi, <), (Vj , <) are two such
ordered open subsets of (X,<), then their order structures agree, by definition,
on the intersection Vi ∩ Vj .
14 Arbitrary continuous curves in M can be constructed by the concatenation of

timelike and spacelike curves, and l-polygons.
15 The definition of fibre bundles is given in Appendix B.
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If B = X, then G = {e} and the maps (8.23) become

gij(x) = e ∀x ∈ Vi ∩ Vj , ∀ i, j ∈ J .

In the general case, p−1(Vi) consists of |G| identical copies of Vi. We in-
troduce a coordinate system on X with values in G as follows: Define a new
indexing set A = J × G, and define Vi,g by

Vi,g = Vi ∀ g ∈ G .

For Vi,g ∩ Vj,g �= ∅, define the coordinate transformations

gj,g′;i,g : Vi,g ∩ Vj,g′ → G (8.25)

as follows:
gj,g′;i,g(x) = g−1g′ (8.26)

for all x ∈ Vi,g ∩ Vj,g′ . It is clear that the transformations so defined are
continuous, and that they satisfy the equations (B.2) and (B.3). To sum up:

Theorem 8.5.1 Let (X,<) be an ordered space, and O = {Vj}j∈J an open
cover of X. If (Vi, <) is the restriction of (X,<) to Vi, and G is a discrete
topological group, then the maps (8.25) and (8.26), which are constant on
connected components, form a system of order-preserving coordinate transfor-
mations on (X,<) with values in G. �

We shall now rename the indexing set J × G and the double index (j, g)
as A and α respectively, for a more convenient notation.

8.5.2 The Total Space

As above, G will be a subgroup of π1 with the discrete topology. G will also
be the fibre, but it will be useful to adopt a distinctive notation. We shall
denote the fibre by Y , with y ∈ Y . The group G will act upon the fibre by
left-translations.16

Endow the indexing set A with the discrete topology, and construct the
topological space X × Y × A. Let T ⊂ X × Y × A be the subset of the
triples (x, y, α) such that x ∈ Vα. Then T is a topological space (with the
subspace topology), and is the union of disjoint open subsets Vα × y × α
homeomorphic with Vi for some i ∈ J . Clearly these homeomorphisms are
order isomorphisms.17

Now define in T an equivalence relation

(x, y, α) ∼ (x′, y′, α′) (8.27)
16 The material of this section is taken from Steenrod’s book, [102], Sect. 3.
17 An order isomorphism is another, slightly shorter term for an order-preserving

homeomorphism.
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if
x = x′, gαα′(x) · y = y′ . (8.28)

The fact that (8.27), (8.28) define an equivalence relation follows from (B.2).
Define B to be the set of equivalence classes of this relation in T , and let

q : T → B (8.29)

be the map which sends (x, y, α) in T to its equivalence class {(x, y, α)} in
B. Finally, let U ⊂ B be open iff q−1(U) is open in T . Then B becomes a
topological space, and q a continuous map.

Define p : B → X by
p({(x, y, α)}) = x . (8.30)

(B.3) ensures that p is well-defined. It is shown in [102] that p is continuous.
The coordinate function φα is defined by

φα(x, y) = q(x, y, α), x ∈ Vα, y ∈ Y .

The continuity of q implies the continuity of φα. Equation (8.30) gives
pq(x, y, α) = x, and therefore pφα(x, y) = x. Thus φα maps Vα × Y into
p−1(Vα). It is shown in [102] that φα is a (fibre-preserving) homeomorphism.

Finally, one can prove that the {gαα′} are the coordinate transformations
of the bundle constructed, by showing that

φ−1
α′,xφα,x(y) = gα′α(x) · y ∀ y ∈ Y .

For details, see [102].

8.5.3 The Order Structure

We may verify that the covering space construction preserves the order struc-
ture. The fact that it is preserved locally results from:

Proposition 8.5.2 Let U ⊂ X be open in X such that π1(U) = e (U has the
subspace topology). Then p−1(U) consists of disjoint subsets of X which are
homeomorphic and order-isomorphic with U .

Proof: Since π1(U) = e, the portion of the bundle over U , considered as a
bundle in its own right, is the product U × Y . Each section of it is homeo-
morphic to U . This homeomorphism can be exhibited as

x ↔ (x, g), x ∈ U, g a fixed element of G ,

which displays that it is also an order-isomorphism. �
This establishes that B is locally an ordered space. If light rays are globally

and not just locally homeomorphic with R (which will always be true if X is
second countable), then the global part of the order axiom holds in B if it
holds in X. This is proven below in Proposition 8.5.3. Since R is paracompact
and contractible, and its fundamental group is trivial, the same would be true
of the light rays.
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Proposition 8.5.3 Assume that light rays are globally homeomorphic with
R, and let l be a light ray in M . Then its lift l̃ to B consists of |G| disjoint
light rays.

Proof: Consider p−1(l), the portion of the bundle B over l. The topological
space l is paracompact and contractible, and therefore every bundle based on
it equivalent to the product. Therefore p−1(l) is homeomorphic with l × |G|,
i.e., it consists of |G| disjoint copies of l. �

It follows from Proposition 8.5.3 (covering spaces lift light rays to disjoint
light rays) that the covering space construction does not admit of the possibil-
ity of “bringing back” a forward light ray to a neighbourhood of a backward
point on it. Such situations may arise in constructions such as compactifica-
tion. They would then lead to a violation of the cone axiom, C+

x ∩C−x = {x}.
This does not happen in the lifting of the order structure to a covering space.
This concludes our demonstration that the order structure on X can be ex-
tended to its covering spaces.

Note, finally, that every path can be approximated by light-ray polygons.
Therefore the fundamental group π1 can be defined in terms of light ray
polygons. This implies, inter alia, that the covering space is l-connected.
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The Cushion Problem

9.1 Statement of the Problem

The cushion problem is the following. Let M be an order complete space,1

U ⊂ M a D-set, a, b ∈ U, a � b and p, q ∈ βI[a, b] such that a, b, p, q are
not coplanar, for example as in Fig. 9.1. Let ξ ∈ l[a, p] and η ∈ l[a, q]. Then
there exist points ξ′ ∈ l[q, b] and η′ ∈ l[p, b] such that λ(ξ, ξ′) and λ(η, η′).
The question is:

Problem 9.1.1 (The cushion problem) Do the light rays lξ,ξ′ and lη,η′

intersect each other in U?

The problem is so named because, if the answer to it is in the negative, the
“ribbon” of light rays from l[a, p] to l[q, b] forms a cushion with the ribbon of
light rays from l[a, q] to l[p, b]. The answer to the question is not known in the
general case; it is, however, known is that there are no cushions in Minkowski
or de Sitter spaces.

Section 9.2 gives a proof of the latter assertion. It is followed by one that
discusses the construction of timelike curves in cushion-free spaces. As will be
seen, this construction is much simpler than the one given in Sect. 8.1.

9.2 Minkowski and de Sitter Spaces

We begin by showing that, in Minkowski 3-space M3 defined by the inner
product (x, y) = x0y0−x1y1−x2y2, the four vertices of a light-ray quadrilateral

1 In [11], the cushion problem was encountered while trying to construct timelike
curves in which light rays were locally homeomorphic with R, but M itself was
not order complete. The problem will also arise in spaces that are locally Fn,
where F is the minimal real algebraic extension of Q that is closed under taking
square roots (see Example 5.2.2 and the footnote to it, p. 58).

H.-J. Borchers and R.N. Sen: Mathematical Implications of Einstein–Weyl Causality,
Lect. Notes Phys. 709, 129–135 (2006)
DOI 10.1007/3-540-37681-X 9 c© Springer-Verlag Berlin Heidelberg 2006
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lie on a one-sheeted hyperboloid (assuming the four points are not coplanar).
To do so, we shall make use of the notion of vector product in M3. If a, b are
two vectors in M3, their vector product [a, b] is defined to be

[a, b] = {a1b2 − a2b1,−(a2b0 − a0b2),−(a0b1 − a1b0)} . (9.1)

The changes of sign (with respect to the vector product in R3) are necessary for
the vector [a, b] to be perpendicular to a and b, i.e., to ensure that (a, [a, b]) =
(b, [a, b]) = 0. One may verify that with a2 = (a, a) the standard formulas

[a, b]2 = a2b2 − (a, b)2 , (9.2)

and

([a, b], c)2 = a2b2c2 − a2(b, c)2 − b2(a, c)2 − c2(a, b)2 + 2(a, b)(b, c)(c, a) (9.3)

in R3 remain valid in M3.
Let a, b ∈ M3, a � b and p, q ∈ βC+

a ∩ βC−b (Fig. 9.1). Introduce the four
light ray segments

l1 = p − a ,

l2 = q − a ,

l3 = b − q ,

l4 = b − q .

(9.4)

We are now ready to prove:
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Fig. 9.1. The cushion problem



9.2 Minkowski and de Sitter Spaces 131

Theorem 9.2.1 (There are no cushions in Minkowski 3-space)

The four points a, b, p, q shown in Fig. 9.1 lie on a hyperboloid of one sheet.

Proof: We have to show that there exist suitable o ∈ M3 and m ∈ R such
that the four equations

({a, b, p, q} − o)2 = −m2 (9.5)

are satisfied simultaneously.2 Using (9.4), equations (9.5) may be written as

(a − o)2 = −m2 ,

(a − o + l1 + l4)2 = −m2 ,

(a − o + l1)2 = −m2 ,

(a − o + l2)2 = −m2 .

(9.6)

We set
a − o = c

and rewrite (9.6) as

−c2 = m2 ,

(c, l1) + (c, l4) + (l1, l4) = 0 ,

(c, l1) = 0 ,

(c, l2) = 0 .

(9.7)

Observe that c is perpendicular to l1 and l2. By (9.1), this implies that c has
the form

c = ξ[l1, l2] . (9.8)

From the second equation of (9.6) we obtain

ξ = − (l1, l4)
([l1, l2], l4)

. (9.9)

and

m2 = − (l1, l4)2[l1, l2]2

([l1, l2], l4)2
. (9.10)

Using (9.2) and (9.3) this can be rewritten as

m2 =
(l1, l4)2(l1, l2)2

2(l1, l2)(l2, l4)(l4, l1)
=

(l1, l4)(l1, l2)
2(l2, l4)

. (9.11)

The existence of o = a − c and m2 establishes the required result. �

2 Here and in the following, {W,X, Y, Z} will denote an ordered four-element set
of which only one element is chosen at a time, as in (9.5).
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Proposition 9.2.2 Let a, b ∈ M3 be on the hyperboloid x2 = −m2. If a − b
is lightlike then the entire ray la,b lies on the hyperboloid x2 = −m2.

Proof: The ray la,b consists of the points b + μ(a − b), μ ∈ R. Now

(b + λ(a − b))2 = b2 + 2μ(b, a − b) + (a − b)2

= b2 + 2μ(b, a − b),
(9.12)

since (a− b)2 = 0. Next, (a− b)2 = (a− b)(a− b) = 0 implies that (a, a− b) =
(b, a − b), and therefore 2(b, a − b) = a2 − b2. But a2 = b2(= −m2), and
therefore a2 − b2 = 0. Therefore

(b + μ(a − b))2 = b2 = −m2

for every μ, i.e., every point on la,b lies on the hyperboloid x2 = −m2. Since
in the three-dimensional Minkowski space the dimension of the hyperboloid
is two, the two families of light rays in a light ray quadrilateral have to cross
pairwise. This establishes the theorem. �

Theorem 9.2.1 leads quickly to the general result:

Theorem 9.2.3 (There are no cushions in Minkowski spaces)

Let a, b, p, q ∈ Mn, n > 3 in the configuration shown in Fig. 9.1, i.e., a, b, p are
coplanar but q lies outside this plane. Then a, b, p, q lie on a two-dimensional
hyperboloid of one sheet.

Proof: Let V ⊂ Mn be the affine (or linear) subspace of Mn spanned by
the light ray segments l[a, p], l[a, q] and l[b, p]. Then V = R3. The proof of
Theorem 9.2.1 is coordinate-free, and therefore applies without change to the
present situation. Note that the point c determined by (9.7) lies in V . �

The result that Minkowski spaces are cushion-free is easily transcribed to
de Sitter spaces.

Theorem 9.2.4 There are no cushions in de Sitter spaces.

Proof: The de Sitter space Vn of dimension n can be embedded in (n + 1)-
dimensional Minkowski space Mn+1 such that

Vn = {x|x ∈ Mn+1, x2 = −m2,m > 0} .

In this embedding light rays of the de Sitter space coincide with light rays
of the ambient Minkowski space. Therefore all relations between light rays in
Minkowski spaces remain true in de Sitter spaces. �
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9.3 Timelike Curves in Cushion-Free Spaces

In this section we shall assume that there are no cushions in M . Under these
circumstances, the construction of timelike curves can be greatly simplified, as
pairs of light ray segments l[ξ, ξ′] and l[η, η′] that are not known to intersect
in the general case (Fig. 9.1) do intersect in Minkowski spaces. Figures 8.1 (p.
104), 8.2 (p. 106) and 8.3 (p. 107) illustrate the complications of the general
case.

Let U be a D-set, a, b ∈ U , and a � b. As before, we shall construct a
timelike segment Θ[a, b] that connects a with b. The construction given below
will be “natural”, although it will depend on the choice of a light ray segment.

Consider the order interval I[a, b] ⊂ U . Fix, arbitrarily, three points
p, q, r ∈ S(a, b) (see Fig. 9.2) and consider the ray segments

l[a, p], l[a, q], l[r, b] and l[q, b] .

For brevity, we rename these segments as follows:

l[a, p] = l[1]
l[a, q] = l[2]
l[r, b] = l[3]
l[q, b] = l[4] .

(9.13)

Fig. 9.2. Coordinates on l[a, p] and l[a, q]
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Fig. 9.3. Construction of timelike curves in cushion-free spaces

We specialize the maps ρ and σ defined by (5.1) and (5.2) to the above
segments as follows:

ρ13 : l[1] → l[3]

σ32 : l[3] → l[2]

ρ14 : l[1] → l[4] .

(9.14)

Let y1 be a point on l[1]; define

y3 = ρ13(y1)

y2 = σ32(y3)

y4 = ρ14(y1) .

(9.15)

What we have done is to take the point y1 on l[1], and map it to l[2] and l[4]
by natural maps mediated by light rays. In the above, a bar over the letter
indicates that the point is the image under a map ρ or σ and depends on the
choice of the segment l[3].

We now define a point yθ ∈ I[a, b] as follows3 (see Fig. 9.3):4

3 Again, the bar over y in yθ indicates that the point depends on the choice of the
segment l[3].

4 In the figure, points of intersection of light rays are marked by dots. We adhere
to the convention that ray crossings that are not so marked need not be points of
intersection.
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yθ = l[y1, y4] ∩ βC+
y2 . (9.16)

Now let x1 and y1 be two distinct points on l[1], and x2, y2 their images
on l[2] under the composite map σ32 ◦ ρ13. Let xθ, yθ be the points of I(a, b)
determined by them by eq. (9.16). Then

x1 <l y1 ⇒ x2 <l y2 . (9.17)

Furthermore, we can show that

x1 <l y1 ⇒ xθ � yθ , (9.18)

and the same with order reversed. We therefore define the segment Θ[a, b] by

Θ[a, b] = {yθ| yθ = l[y1, y4] ∩ βC+
y2 , y1 ∈ l[1]}. (9.19)

The proof that Θ[a, b] is a timelike curve is fairly straightforward, and is
omitted.

It should perhaps be remarked that, in a D-set in which light ray segments
are differentiable, naturally constructed timelike curves are also likely to be
differentiable.

If M is cushion-free, then the proof of (9.18) is routine. We have not
succeeded in proving that (9.18) holds if M is not cushion-free.
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Related Works

The special and general theories of relativity have led to many attempts at
axiomatization of the theories, as well as of the notion of space-time. Some
of it appears to have been explicitly motivated by (see, for example, [44])
Hilbert’s sixth problem: “Mathematical Treatment of the Axioms of Physics”
[15]. The work presented in this monograph is, by contrast, much more limited
in scope. The quotations given below will set this in perspective.

This is how Hilbert formulated his sixth problem:1

The investigations on the foundations of geometry suggest the prob-
lem: To treat in the same manner, by means of axioms, those physical
sciences in which mathematics plays an important part; in the first
rank are the theory of probabilities and mechanics.

And this is how he described his work on the foundations of geometry:

The following investigation is a new attempt to choose for geometry
a simple and complete set of independent axioms and to deduce from
these the most important geometrical theorems in such a manner as to
bring out as clearly as possible the significance of the different groups
of axioms and the scope of the conclusions to be derived from the
individual axioms [49].

By contrast with Hilbert’s axiomatization of geometry or his sixth prob-
lem, our axiomatization is that of a single physical principle. Moreover, we
have confined our investigations to determining the further mathematical
structures that this single physical principle imposes (or suggests) on the
point set on which it is defined. There is a considerable distance between our
investigations and the axiomatization of a physical theory that has to satisfy
the causality principle. The plain fact is that further hypotheses are required

1 We may refer the reader who is interested in Hilbert’s sixth problem to the article
by A. S. Wightman [127].

H.-J. Borchers and R.N. Sen: Mathematical Implications of Einstein–Weyl Causality,
Lect. Notes Phys. 709, 137–146 (2006)
DOI 10.1007/3-540-37681-X 10 c© Springer-Verlag Berlin Heidelberg 2006
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to arrive at even something so basic as the space-time of special relativity, as
was indicated in Sect. 8.4.

There is, therefore, little in common between our investigations and the
axiomatization of relativity theories or of the concepts of space-time. There
are, however, two works that are exceptions to this rule. These are the works
by Kronheimer and Penrose [66] and by Ehlers, Pirani and Schild [32].

Kronheimer and Penrose (hereafter KP) set up a scheme that is manifestly
more general than ours for the study of global features of causal spaces, but not
detailed enough to study their local structure as we have done. The abstract
of their paper reads as follows:

The paper examines the structure obtained by abstracting from the
conventional (manifold) representation of relativistic space-time the
concept of an event-set equipped with two partial orderings, whose
counterparts are the notions “causally precedes” and “chronologically
precedes in the history of some observer”.

However, they make “no attempt to introduce sufficient axioms to reproduce
all relevant properties of that model” [space-time], but rather “keep the axiom
system as small and physically reasonable as possible”, with the following aims
in view (we quote from their paper):

1. To analyse unusual or pathological features of space-time manifolds for
which no criterion of physical admissibility may otherwise be evident.

2. To admit structures which can be very different from a manifold [such as
discrete space-times].

Ehlers, Pirani and Schild [32] address a different problem, and carry out a
strictly local analysis. Starting from Weyl’s observation [116] that a space-time
manifold carries a host of different mathematical structures – topological, dif-
ferential, conformal, projective, affine and (pseudo)-metric – that are related
to each other, they ask which of these structures should be considered basic
and which derived. They state their aim as follows:

We wish to show how the full space-time geometry [conformal, pro-
jective, affine and pseudo-Riemannian] can be synthesized from a few
assumptions about light propagation and free fall.

Chief among their assumptions is sufficient differentiability for the paths of
light rays and freely falling particles. As our analysis is devoted to elucidating
the local structure of the space, firstly without assuming differentiability, and
then embedding it (densely) in one on which differentiability may be assumed,
it falls in the no-man’s land between the works of Kronheimer and Penrose,
on the one hand, and of Ehlers, Pirani and Schild, on the other.

We shall describe parts of these works in sufficient detail to justify the
above statement. Finally, we shall give some references to works on the ax-
iomatization of Minkowski space and of relativity theory that we have come
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across. We are not specialists in these areas, and apologize in advance to
authors whose works we may have overlooked.

Acknowledgment: The authors were not aware of the work of Kronheimer
and Penrose [66] when [10] and [11] were written. They would like to thank
H. Goenner for drawing their attention to it.

10.1 The Work of Kronheimer and Penrose

Recall that the aim of the authors was to provide a minimal axiomatization
of the notion of causality, so that the resulting class of causal spaces would be
as large as possible. We begin with a brief description of the axioms and some
key definitions, adhering to the original notations,2 but changing the order of
presentation to suit our purposes.

KP 1.2: Definition

A causal space is defined to be a quadruple {X,≺,�,→} where X is a set,
≺ and � are two partial orders and → a relation defined on X. They are
required to satisfy the following conditions (x, y, z ∈ X):

1. x ≺ x.
2. If x ≺ y and y ≺ z then x ≺ z.
3. If x ≺ y and y ≺ x then x = y.
4. x �� x.
5. If x � y then x ≺ y.
6. If x ≺ y and y � z then x � z.
7. If x � y and y ≺ z then x � z.
8. x → y if and only if x ≺ y and x �� y.

Each point a of a causal space X has a causal future, a chronological future
and a null future which are defined respectively by the sets

J+(a) = {x|a ≺ x} ,

I+(a) = {x|a � x} ,

C+(a) = {x|a → x} = J+(a) \ I+(a) .

(10.1)

The past sets J−(a), I−(a) and C−(a) are defined similarly, by reversing the
order.

KP 1.3: The Alexandrov topology T ∗ on a set X equipped with the partial
order � is defined as the coarsest topology on X in which each set I±(x) is
open.

2 A number such as KP 1.2: means that the statement that follows is taken from
in Sect. 1.2 of KP, i.e., of [66].
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10.1.1 The Relation →
KP 1.1: Definition A reflexive relation R will be called horismotic if, for
every finite sequence {xi|xi ∈ X, 1 ≤ i ≤ n − 1} such that xiRxi+1, and all
positive integers h, k satisfying 1 ≤ h ≤ k ≤ n,

1. x1Rxn ⇒ x1Rxk, and
2. xnRx1 ⇒ xh = xk.

Any reflexive partial ordering is horismotic.

KP Lemma 1-1 Let x, y, z be points in a causal space. If x ≺ y ≺ z and
x → z, then x → y → z.

KP 2.1: Construction of a causal space from the horismos

Let X be a set and → a horismotic relation on it. Define the relations ≺A and
�A on it as follows:

1. x ≺A y iff there exists a finite sequence {ui|ui ∈ X, 1 ≤ i ≤ n} which
satisfies

x = u1 → u2 → · · · → un = y; (KP 2 · 1 · 1)

2. x �A y if x ≺A y and x �→ y.

Then {X,≺A,�A,→} is a causal space.

10.1.2 Comparison with the Present Work

The following identifications are obvious, and unique:

1. The order ≺ of KP may be identified with our <, i.e., x ≺ y ≡ y ∈ C+
x .

Then condition 3) of def. KP 1.2 becomes our cone axiom.
2. The order � of KP may be identified with our �. Then conditions 4)–7)

of def. KP 1.2 will be satisfied.
3. With these identifications, the relation x → y of KP will have the following

meaning: x → y ≡ y ∈ βC+
x . However, in our scheme y ∈ βC+

x ≡ x <l y,
so that x → y ≡ x <l y.

The rendering of (KP2 · 1 · 1) into our scheme will read as follows:

x < y iff there is an ascending l-polygon from x to y.

The rendering of KP lemma 1-1 into our scheme will read as follows:

Let x, y, z be points in a causal space. If x < y < z and x <l z, then
x <l y and y <l z.
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If now x, y, z lie in a D-set then, in our scheme, the convexity axiom3 would
require x, y, z to lie on the same light ray. However, the KP axioms do not
make this demand, which is precisely what makes the relation → nontrivial
in KP. Lemma KP 1-1 means that the light ray segments l[x, y], l[y, z] and
l[x, z] form a triangle which lies on βC+

x , which is impossible in Minkowski
spaces.

In our scheme, the crucial Theorem 5.1.3, which states that the standard
maps ρ and σ (defined by (5.1) and (5.2) respectively) are bijective and are
the inverses of each other, will not hold without the convexity axiom, as shown
by the example that follows. This in turn will entail the failure of the entire
development from Chap. 5 onwards, that is of the entire theory of the local
structure of ordered spaces as developed in the present work.

The example that follows is established under a condition that is weaker
than the convexity axiom. It is:4

If x ∈ U and l ∩ βC+
x contains two distinct points, then

l ∩ βC+
x ∩ U ⊂ βC+

x ,

and the same for reversed order.

Example 10.1.1 Let M = R3 and x = (x0, x1, x2). Define the cones C±x at
x as follows:

C+
x = {z|z ∈ R3, (z0 − x0)2 − (z1 − x1)2 − (z2 − x2)2 ≥ 0 ,

z0 − x0 ≥ 0, z1 − x1 ≤ 0} ,

C−x = {z|z ∈ R3, (z0 − x0)2 − (z1 − x1)2 − (z2 − x2)2 ≥ 0,

z0 − x0 ≤ 0, z1 − x1 ≥ 0} .

The boundaries of these cones will consist of two parts, the “normal” part
which we shall denote by βC±x (N) and the “vertical” part which we shall
denote by βC±x (V ). Explicitly,

βC+
x (N) = {z|z ∈ R3, (z0 − x0)2 − (z1 − x1)2 − (z2 − x2)2 = 0 ,

z0 − x0 ≥ 0, z1 − x1 ≤ 0}

βC+
x (V ) = {z|z ∈ R3, z0 − x0 ≥ 0, z1 − x1 = 0 ,

(z0 − x0)2 − (z2 − x2)2 ≥ 0},

(10.2)

3 Recall that the convexity axiom is the name given to condition d) of the defining
Properties 4.2.1 of D-sets.

4 This is condition d) of the definition II.2.1 of D-sets in [10], and is more or less
the same as lemma KP 1-1. The Example 10.1.1 given above, found after [10] was
published, showed that this condition was too weak to enforce the desired results.
It was therefore replaced by condition d) of 4.2.1 in [11].
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with
βC+

x = βC+
x (N) ∪ βC+

x (V ) .

The parts βC−x (N) and βC−x (V ) of βC−x may be written down analogously.
The light rays through x are the straight lines through x lying on βCx.

Choose now two points

x = (0, 0, 0) and y = (2,−1, 0) (10.3)

and two light rays

lx = {a(1, 0,−1)|a ∈ R}

ly = {(2,−1, 0) + b(−1, 1, 0)|b ∈ R}
= {(2 − b, b − 1, 0)|b ∈ R} .

(10.4)

Clearly, y � x. One may verify that l+x ⊂ βC+
x (N) and l−y ⊂ βC−y (N).

Next, we define the points p = l+x ∩ βC−y and q = l−y ∩ βC+
x . A short

calculations shows that

p =
(

3
4
, 0,−3

4

)
,

q = (1, 0, 0) .

(10.5)

It follows from the above that

lx[x, p] =
{

(a, 0,−a)
∣∣∣0 ≤ a ≤ 3

4

}
ly[q, y] = {(2 − b, b − 1, 0)|0 ≤ b ≤ 1} .

(10.6)

We want to determine, explicitly, the map ρ : lx[x, p] → ly[q, y] defined by
ρ(r) = βC+

r ∩ ly[q, y], where r ∈ lx[x, p].
Substituting r = (a, 0,−a) for x in (10.2), we obtain the conditions that

determine βC+
r (N) and βC+

r (V ) in terms of a. Setting z = (2 − b, b − 1, 0)
into these conditions, we obtain the conditions on a and b that determine the
intersections ly ∩ βC+

r (N) and ly ∩ βC+
r (V ). Carrying out the calculations,

we find that

1. ly ∩ βC+
r (N) �= ∅ iff

b =
3 − 4a

2(1 − a)
(10.7)

or, equivalently

a =
3 − 2b

2(2 − b)
. (10.8)
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2. l−y ∩ βC+
r (V ) �= ∅ iff

0 ≤ a ≤ 1
2

, (10.9)

and for every value of a in this range,

b = 1 .

Equations (10.7)–(10.9) determine the behaviour of the map ρ : lx[x, p] →
ly[q, y]. We find that:

1. The segment lx[(1
2 , 0,− 1

2 ), (3
4 , 0,− 3

4 )] is mapped one-to-one onto the seg-
ment ly[(1, 0, 0), (2,−1, 0)].

2. The segment lx[(0, 0, 0), (1
2 , 0,− 1

2 )] is mapped into a single point q =
(1, 0, 0) on ly[q, y].

By contrast with KP, we start from light rays and the order <l on them.
In the language of KP, we abstract from the event set only the causal and not
the chronological order. We define the order relations < and � (which are
parallel to the ≺ and � of KP) in terms of <l. The main differences between
our ansatz and that of KP are:

1. Our spaces are dense subsets of complete spaces. They allow totally dis-
connected spaces such as Q2 and its higher-dimensional analogues Fn (see
Example 5.2.2, and also footnote 3 on p. 58).5 The density axiom on light
rays (part b of Axiom 3.1.2) has the big advantage that τ -interiors and
β-boundaries of light cones can be defined without the topology.

2. In the language of topological vector spaces (when appropriate), our cones
have one-dimensional faces. KP allow general faces.

Our definition of D-sets is none other than a basis for an improved version of
the Alexandrov topology.

10.2 The Work of Ehlers, Pirani and Schild

The background to the work [32] of Ehlers, Pirani and Schild is a certain
problem on the foundations of general relativity, on which there exists a very
substantial literature. However, this problem lies well beyond our scope. For
a brief but lucid summary, we refer the interested reader to a later work by
Woodhouse [131]. Further references may be found in this work and in the
bibliography of [32].
5 In the physics literature, one often finds the term discrete space used where the

term totally disconnected may well be more appropriate, as in the phrase “[such as
discrete space-times]” in one of the quotations from KP on p. 138. In mathematical
usage, a discrete (topological) space is one in which one-point sets are open, and
this topology can have no relation to any causal structure.
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10.2.1 Notations and Terminology

The terms event, particle, message and echo are often used in the literature on
relativity theory. Event denotes a point in space-time, which is generally as-
sumed to be a 4-manifold. Particle denotes the space-time trajectory or world
line of a physical point-particle with mass. Such a trajectory is ordinarily a
timelike curve.

Let P,Q be two particles, p a point on P and q = βC+
p ∩Q. It is assumed

that the intersection is nonempty. The map defined by m : p �→ q is called a
message from P to Q. Now let p′ = βC+

q ∩P . The formula p′ = e(p) defines a
map e : P → P that is called the echo on P from Q. Often the domains and
co-domains of these maps are not specified any further.

Let e be an event and P,P ′ two distinct particles. Let

u = βC−e ∩ P ,

r = βC+
e ∩ P ,

u′ = βC−e ∩ P ′ ,
r′ = βC+

e ∩ P ′ .

(10.10)

If P and P ′ are each furnished with a real parameter (local coordinates), then
(10.10) defines a map xPP ′ : e �→ (u, u′, r, r′) from M to R4. The numbers
u, u′, r, r′ are called the radar coordinates of e.

EPS use M to denote the underlying (4-dimensional) space and C,P and
A to denote, respectively, the conformal, projective and affine structures on
it. For p ∈ M , they denote the tangent space at p by Mp and the projective
3-space of directions at p by Dp. They use L1, L2 to denote light rays, and Le

to denote the set of lightlike directions at the event e.

10.2.2 The EPS Axioms

Axiom D1: Every particle is a smooth, one-dimensional manifold; for any
pair P,Q of particles, any echo on P from Q is smooth and smoothly invertible.

Axiom D2: Any message from a particle P to another particle Q is smooth.

Axiom D3: There exists a collection of triplets (U,P, P ′), where U ⊂ M ,
P,P ′ ∈ P such that the system of maps xPP ′ |U is a smooth atlas for M .
Every other map xQQ′ is smoothly related to the local coordinate system of
that atlas.6

Axiom D4: Every light ray is a smooth curve in M . If m : p �→ q is a message
from P to Q, then the initial direction of L at p depends smoothly on p along
P .

6 Radar coordinates cannot be defined on odd spacetime dimensions. However,
alternatives that apply to odd as well as even dimensions are easily devised.
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Axiom L1: Any event e has a neighbourhood V such that each event p in V
can be connected within V to a particle P by at most two light rays. More-
over, given such a neighbourhood and a particle P through e, there is another
neighbourhood U ⊂ V such that any event p in U can, in fact, be connected
with P within V by precisely two light rays L1, L2, and these intersect P in
two events e1, e2 if p /∈ P . If t is a coordinate on P ∩ V with t(e) = 0, then
g : p �→ −t(e1)t(e2) is a function of class C2 on U (see Fig. 10.1).

Axiom L2: The set Le of light-directions at an (arbitrary) event e separates
De − Le into two connected components. In Me the set of all non-vanishing
vectors that are tangent to light rays consists of two connected components.

Axiom P1: Given an event e and a C-time-like direction D at e, then there
exists one and only one particle P passing through e with direction D.

Axiom P2: For each event e ∈ M , there exists a coordinate system (x̄a),
defined in a neighbourhood of e and permitted by the differential structure
introduced in Axiom D3, such that any particle P through e has a parameter
representation x̄a(ū) with

d2x̄a

dū2

∣∣∣∣
e

= 0 ; (10.11)

such a coordinate system is said to be projective at e.

Axiom C: Each event e has a neighbourhood U such that an event p ∈ U, p �=
e lies on a particle P through e if and only if p is contained in the interior of
the light cone νe of e.
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Fig. 10.1. Illustrating Axiom L1
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Clearly, EPS are assuming that M has a differentiable structure, and that
the order structure itself is differentiable.

If the cushion problem is answered in the negative, then one would have
at hand a class of timelike curves that are defined naturally, and one could
expect the differentiability of light rays to extend to these timelike curves as
well. This would enable a fairly smooth transition to be established between
our work and EPS.

To conclude this section, we refer to the paper by Woodhouse [131] that
was mentioned earlier. This paper gives a somewhat different version of the
work of Ehlers, Pirani and Schild.

10.3 Other Works

The works mentioned in this brief section are works that we have come across.
They are rather far from our areas of specialization and we are not in a
position to do justice to them. For the same reason, it is entirely possible that
there are other works of similar scope and significance that we have not come
across; omission from this section should be interpreted as a reflection of our
unfamiliarity with the field, and not as a judgment.

10.3.1 The Monograph of Schutz

Schutz [95] has a monograph entitled Independent axioms for Minkowski
space-time, published in 1997. This volume has an introductory chapter that
covers i) axiomatic systems, ii) independence and consistency of the set of
axioms, iii) axiomatic systems for geometries, iv) axiomatic systems for space-
times and v) a brief introduction to the [author’s] present axiomatic system.
The rest of the books develops this theme. It has, however, some appendices
of wider interest, and a fairly extensive bibliography.

10.3.2 Works of Soviet Scholars

Soviet scholars have followed the lead of A. D. Alexandrov and developed a
school on the foundations of relativity theory or axiomatic relativity. We may
cite the review by Guts [44], entitled Axiomatic Relativity Theory (which has
an extensive bibliography), and a slightly later work by Guts and Levichev
[45], which has some further results.
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Concluding Remarks

The remarks in this chapter are divided into three parts: Concerning physics,
concerning mathematics and concerning Cantor, Wigner and Popper.

11.1 Concerning Physics

The theory developed in these pages may give the impression that we are
dealing mainly with a branch of mathematics. However, our endeavour is
based solidly on ideas prevailing in contemporary physics. Therefore some
remarks on the physical background and the problems raised by it that are
currently under investigation may not be out of place.

The backbone of natural sciences is the fact that experiments can be re-
peated at different times and at different places, and that the outcomes of
the same experiment performed at different times and places turn out to be
the same, within experimental errors. The ‘scientific method’ assumes that
a background of space and time or space-time is given, and that one knows
how to compare experiments at different places and different times. A deeper
analysis of this assumption leads to the concept of symmetry (see, e.g., Ekstein
[36, 37] and Avishai and Ekstein [5]). The notion of indefinite repeatability
of experiments may be considered as validated for laboratory physics, but
it is not relevant to astronomy, where one does not have the possibility of
controlling parameters that one has in the laboratory.1 One observes events
that may be widely separated in space and time – for example, γ-ray bursts –
and one needs a theory that can compare events that are so separated. If the
background is given, then one can speak about the position of a material ob-
ject. In quantum mechanics the determination of position is restricted by the
uncertainty principle. In classical physics, one may say that it is restricted by
the Gaussian theory of errors. In both cases a point is effectively replaced by

1 Indeed, astronomers call their subject an observational and not an experimental
science.

H.-J. Borchers and R.N. Sen: Mathematical Implications of Einstein–Weyl Causality,
Lect. Notes Phys. 709, 147–156 (2006)
DOI 10.1007/3-540-37681-X 11 c© Springer-Verlag Berlin Heidelberg 2006
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a (continuous) distribution function. The C∗-algebra formed by these distri-
butions reconstructs the background space via the Gelfand isomorphism (see
[24, 81]).

If space-time itself becomes an object of scientific investigation, the situ-
ation becomes much more complicated. Since two or more experiments cannot
generally be performed simultaneously at the same place, the assumption that
the physical space-time continuum consists of points becomes a theoretical
construct which is not directly testable by experiment. The postulate of a
continuum of events can only be justified if the testable predictions of a theory
based on this postulate are verified experimentally.2 This is indeed the case for
Einstein’s general theory of relativity [34]. One local example is the precession
of the perihelion of Mercury. In the 19th century this effect could not be fully
explained by the influence of the other planets. The discrepancy that remained
was explained by Einstein.

Another example that supports Einstein’s general theory of relativity is
the bending of light by the gravitational field of the sun. In 1911, Einstein
calculated this effect by combining Newtonian gravitation with special rela-
tivity. He used the fact that in a homogeneous gravitational field all bodies
fall equally fast, plus the equivalence of mass and energy.3

Let the energy of a system be E0 at the point S0. If it is raised by the
height h to the point S1, its energy will become E1 = E0(1 + γh/c2). If S0

may be regarded as the position of a gravitating mass-point, this formula may
be written as E1 = E0(1 + Φ/c2), where Φ is the Newtonian potential. From
this one obtains the formula

c = c0

(
1 +

Φ

c2
0

)
, (11.1)

for the velocity c of light at S1. With this Einstein derived, as in geometrical
optics, the general formula

α =
1
c2

∫
∂Φ

∂n′
ds (11.2)

for the bending of a light ray. In the above, ds is the line element and n′ is
the normal to the gradient of the potential. When the gravitational field is
that of a single star, (11.2) becomes

α =
2kM

c2Δ
, (11.3)

where m is the mass of the star, k is the gravitational constant and Δ is
the distance from the centre of the star to the closest point on the light ray.

2 At this point the reader may be referred to Popper’s work [84], the brief discussion
in Sect. 11.3, and the article [96].

3 See the report by Pauli [80].
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Assuming the star to be the sun, Einstein obtained the figure α = 0′′.83. How-
ever, the general theory of relativity, in which light rays were null-geodesics,
predicted a displacement α = 1′′.75. Details of the calculation may be found
in most textbooks.

The British expeditions of 1919 that observed this bending [31] during
the total solar eclipse confirmed the general relativity value.4 Just after the
horrors of World War I, a British scientific expedition had overthrown Newton
and confirmed the theory of an enemy scientist! It caught the imagination of
the newspapers, and made Einstein’s name into a household word.

Another local prediction of the general theory of relativity was that the
change of the local metric5 with time is negligible; this fact is put to use for
the global positioning system (GPS). Hubble’s discovery of the recession of
galaxies in 1929 [51], made with the 100-inch Mt. Palomar telescope, started
the modern era of cosmology. This, in turn, led to the model of the expanding
universe. The observation of the 3◦ K cosmic microwave background radiation
by Penzias and Wilson from the Bell Telephone Laboratories [83] reinforce the
idea that the universe must have had a beginning; this beginning is usually
called the big bang. Trust in the cosmological model is a matter of taste; not
everyone likes the idea that most of the matter (dark matter) and the greater
part of energy (dark energy) in the universe should be inaccessible to direct
observation.

The standard theory is based on the concept of geometrical points, al-
though one is aware of the fact that they are not accessible to experiment.
Therefore some people believe that in the regime of Planck length (∼10−33 cm)
the concept of points should be replaced by something else. Doplicher, Freden-
hagen, and Roberts [26] discussed this problem and argued that the coordi-
nates xk of a point is space should not commute, and invented commutation
relations for the different components. Similar relations were used by Wess
[111]. These have been other attempts to replace standard space-time by a
non-commuting object, but they will not be discussed here. However, the
construction of quantum field theory on such objects is still at a rudimentary
state. (A quantum field theory on a manifold or on a generalized manifold
corresponds to a theory of test particles which do not influence the structure
of the manifold.) For an example, see [6].

There have been several attempts at a quantum theory of the gravitational
field. One of them is string theory, on which we do not wish to comment. An-
other is the background-independent method of quantization developed by
Ashtekar (see, e.g., [2]). But, as far as we know, there is as yet no theoreti-
cal replacement for the manifold, at least in ZFC-mathematics, in which the

4 An account of later observations on quasars that improved the accuracy by an
order of magnitude may be found in [90].

5 Here and in the following the term metric is used in the sense of general relativity;
see Sect. 2.2.1.
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concept of points is not meaningful in the small. We have therefore based our
investigation on the notion of sets of geometrical points.

Our second fundamental concept is that of light rays. Light rays are often
exploited in everyday life for purposes other than seeing. In a factory, for
instance, or for excavating tunnels, light rays are used to lay out straight
lines. All such uses are based on the fact that the change of the metric with
time is negligible and that flat space is a good approximation to reality. More
generally, one should identify light rays with geodesics, as Gauß6 did when he
tried to determine the structure of space. (At that time space and time where
independent entities.) He used large triangles with sides several kilometres
long and measured the sum of the three angles; he could not detect any
discrepancy from π. As vertices of the triangle Gauß used towers which were
constructed for his triangulation of the palatinate of Hannover [41].7

Recall that we represented light rays mathematically by totally ordered
sets which become endowed, upon completion, with one-dimensional differen-
tiable structures.8 According to H. Kneser [60] there exist, besides the circle,
four other one-dimensional Hausdorff continua endowed with a C(k)-structure.
They are the real line, the two long half-lines, and the long line. Since length
measurements determine distances between two points (which are compact in-
tervals), and since one can make only a finite number of such measurements,
a physical quantity of the nature of a length can be represented on the real

6 In the text, we have used the modern German spelling of the name Gauß. In
his own works, which were written in Latin, Gauß used the Latin spelling of
his name. This spelling was retained in the German translation [41] cited in the
bibliography, and we have adhered to the original.

7 Details of the measurement are given in Sect. 28 of reference [41]. The largest
triangle was between the mountains Brocken–Inselberg–Hoher Hagen, with the
sides being approximately 105–85–70 km long. The difference of the sum of the
three angles from 180◦ was less than 2′′.

8 There appears to be little uniformity in the definition of a topological or dif-
ferentiable manifold in the literature. The definition of a C(k)-structure (k =
0, 1, . . . ,∞) by means of compatible overlapping charts seems to be unique. But
a space possessing a C(k)-structure does not have to be Hausdorff, second count-
able or paracompact, and this is where definitions begin to differ. For example,
Kneser [60] and Matsushima [75] require the Hausdorff condition but not second
countability or paracompactness. Kosinski [64] requires a manifold to be Haus-
dorff and second countable, whereas Hirsch [50] requires one to be paracompact
as well. Kobayashi and Nomizu, in their standard text (vol. 1 of [62]) introduce
the assumption of paracompactness only on p. 58. The definition of a manifold
that we used in Chap. 2 assumes all three conditions to ensure the existence of a
Riemannian metric.

These distinctions are not academic. The line with two origins, for example, is
second countable, paracompact but not Hausdorff; the long line is Hausdorff but
not second countable or paracompact. Many other counterexamples may be found
in [101].
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line. This follows from the fact that a compact connected set on any of these
four lines is isomorphic to a closed interval on the real line.

In Sect. 3.1 we stated that our mathematical notion of light rays corre-
sponded to null geodesics (see footnote 2 on p. 16). This is true by definition
in Minkowski space. In the general theory of relativity, Minkowski space is de-
void of matter (and therefore of light), which leads to the unhappy conclusion
that our definition of light rays can make sense only if there is no light! How-
ever, one does not have to put up with such misery. One can also abstract our
mathematical notion of light rays from objects of geometrical optics, adapted
to space-times of general relativity. Then the index of refraction may be in-
terpreted as the effect of interstellar gases and dust, and a density gradient
of the latter should lead to a deviation of light rays from geodesics. The as-
sumption one has to make is that the refraction is dispersion-free. Recall that
we also allowed two light rays to cross each other more than once (although
not in a D-set; see Example 3.1.13). This happens not only in our theory (as
a consequence of the global structure, as in the example quoted), but also in
nature. This effect is called the formation of images by gravitational lenses,
and is observed in nature as a consequence of the presence of large masses.

If the ordered space M is finite dimensional, then it can be embedded in
a finite dimensional Euclidean space. In this situation one may look at the
global structure of light rays. Not every light ray needs to tend to infinity
at both ends. For instance a star produces holes in the manifold. These are
timelike cylinders where the light rays might end or begin. If stars are born,
then these cylinders have a cone-like beginning. If one wants to describe an
expanding universe which starts with a big bang, then all light rays originate
at a point or in some finite area, depending on the details of the model. For the
description of black holes the situation is reversed in time, which means that
some of the light rays end at black holes. Whether they end at the singularity
or already at the horizon depends on the situation. Our axioms might be
valid across the horizon and inside. If not the light rays will have to end at
the horizon.

In Sect. 8.4 we showed that locally compact order complete spaces carry
a local differentiable structure. This does not imply that there exists a global
differentiable structure. The main obstruction is the fact that the structure is
influenced by the choice of the timelike curve. The construction of the curve
in Sect. 8.1 depends on the choice of the coordinates on l[a, p] and l[a, q]
and the choice of the two points p, q ∈ S(a, b) (see Fig. 8.1). If we change
the points and the coordinates, then, in most cases, the two timelike curves
will lead to different parametrizations of the D-interval which will not be
diffeomorphic to each other. Therefore, when we have two D-intervals with
non-empty intersection, the two parametrizations of the intersection will not
be diffeomorphic to each other.
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If one takes the viewpoint of a practitioner,9 namely, that since it is im-
possible to distinguish between a continuous, nowhere differentiable and a
C(∞)-manifold by a finite number of experiments, one might as well assume
that one is dealing with a smooth space, then there remains another problem.
We are dealing with an ordered space, and therefore we would like the interior
of the cone mantle (without the vertex x) βC±x \{x} to be a C(∞)-submanifold
of codimension one. This problem can only be solved if we assume isotropy,
as we did in Sect. 8.4.3.

In Chap. 9 we discussed the cushion problem and saw that there are no
cushions in Minkowski and de Sitter spaces. We do not know what this result
tells us about the structure of a space that is known to be cushion-free. The
universal covering of a de Sitter space can be mapped order equivalently onto
Rn with the same dimension n, but with a non-Minkowski order. Therefore
one might ask whether or not the universal covering of a cushion-free space
can be mapped order equivalently into a Riemann surface over Rn of the same
dimension.

Another problem that we have not discussed is the following: In Sect. 5.1
we introduced the standard homeomorphisms ρ and σ between light ray seg-
ments lying on the boundary of a D-interval βI[x, y]. Choosing now four dif-
ferent points {p1, . . . , p4} ∈ S(x, y) we can construct the chain

l[x, p1] −→ l[p2, y] −→ l[x, p3] −→ l[p4, y] −→ l[x, p1]

and obtain a map from l[x, p1] onto l[x, p1]. Changing the points {p2, . . . , p4}
we obtain a group of maps of l[x, p1] onto itself which leaves the endpoint
fixed. What is the structure of this group? If we change the D-interval, does
then the structure of the group change?

Our investigation is concerned only with the conformal structure of phys-
ical space. If one wants to go on to the Weyl projective structure one would
have to postulate that the two vertices of a D-interval are connected by a
unique trajectory of a freely falling test particle. These curves would corres-
pond to timelike geodesics. By changing the order interval we would obtain
different geodesics. Such a trajectory between the vertices and be mapped
onto the real interval [−1, +1]. Denoting the points on this curve by p(t), we
can define a spacelike hypersurface ∪{S(p(−t), p(+t)); 0 ≤ t ≤ 1}. There re-
mains the problem of comparison of the scales for different D-intervals. This
would be necessary for giving a meaning to the intersection of several spacelike
hypersurfaces obtained from different trajectories containing a given point.

11.2 Concerning Mathematics

The notion of partial order, by itself, is probably too weak to be either inter-
esting or useful; the category of “partially ordered spaces” will be much too
9 A somewhat more skeptical view is discussed in Sect. 11.3.
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large. The class that we have called ordered spaces is much more structured.
“Forgetting” all the physics, one may define an ordered space as follows.

Definition 11.2.1 An ordered space is a point-set X with a nonreflexive and
nonsymmetric partial order � defined on it. This partial order is required to
satisfy the following conditions (which are not necessarily independent):

1. a, c ∈ X, a � c ⇒ ∃ b ∈ X such that a � b � c.
2. If x ∈ X then ∃ a, b ∈ X such that a � x � b.
3. For a, b ∈ X, a � b, define I(a, b) = {x|x ∈ X, a � x � b}. The collection

U = {I(a, b)} covers X, and is a base for a topology T on X.
4. There exists a refinement W = {I(α, β)} of T which is

a) A cover for X.
b) A base for the topology of X.
c) Let x ∈ I(a, b) ⊂ W , where W ∈ W. Then for points a′, b′ with

a � a′ � b′ � b, one has Ī(a′, b′) ⊂ I(a, b). Here the bar above means
topological closure.

d) I(α, β), I(α′, β′) ∈ W implies that I(α, β) and I(α′, β′) are homeo-
morphic to each other.

�

The ordered space defined above has the following property:

Theorem: If {X, T } is Hausdorff, then it is a Tychonoff space. �
Consequently, the pair {X,�} is a mathematically useful, and therefore in-
teresting, object.

Note that the Hausdorff assumption is essential; it does not follow from
Def. 11.2.1. The topology of “Newton causality” described on p. 5 satisfies
the conditions of Def. 11.2.1, but is not Hausdorff.

Furthermore, we have seen in Sect. 8.2.1 that an order complete space
possesses certain separation properties analogous to the Jordan-Brouwer sep-
aration properties. An order structure imposed on Rn+1 followed by the one-
point compactification makes it easy to prove results analogous to the Jordan
curve Theorem 8.2.12, because the notions of “inside” and “outside” are very
precisely defined for order intervals. This may also be an avenue worth ex-
ploring.

Remark 11.2.2 Recall the definition of a symmetric relation R: xRy ⇒ yRx
for all x, y, so that the statement that R is nonsymmetric only means that
there exist x, y such that xRy �⇒ yRx; the existence of pairs a, b such that
aRb ⇒ bRa is not excluded. However, if R is transitive – which is obligatory
for a partial order – then aRb and bRa together imply aRa (and bRb), which
contradicts the nonreflexivity of R. That is, if ≺ is a nonreflexive, nonsym-
metric order relation, then x ≺ y necessarily implies that x �= y.



154 11 Concluding Remarks

The order relation � defined in 11.2.1 has been abstracted from the rela-
tion y ∈ τC+

x (Theorem 3.2.22). The conditions that this relation is required
to satisfy have been abstracted from the result that there exists a family of
D-intervals that covers M and is a basis for a topology. Had we used the order
≺ abstracted from the relation < (or y ∈ C+

x ) of Def. 3.2.6, the definition of
the topology would have been more involved (as the sets {x|a ≺ x ≺ b} would
have been closed), and the transparency of Def. 11.2.1 would have had to be
sacrificed.

11.3 Concerning Cantor, Wigner and Popper

It could be an understatement to say that Georg Cantor has not always been
well served by the early writers who have written about the man and his work
(see the Introduction to [20]). The following quotations are from the section
Nature of Mathematics, pp. 132–133, in Georg Cantor: His Mathematics and
Philosophy of the Infinite, by J. W. Dauben [20], a more recent work which
was first published in 1979:

Cantor asserted the reality of both the physical and ideal aspects of
the number concept. . . It was one of the most difficult problems of
metaphysics to determine the nature of the connection between the
two.
Cantor ascribed the necessary coincidence of these two aspects of
number to the unity of the universe itself.10 This meant that it was
possible to study. . . [it] without having to confirm or conform to any
objective content. This set mathematics apart from all other sciences
and gave it an independence that was to imply great freedom for
mathematicians in the creation of mathematical concepts. It was on
these grounds that Cantor offered his now famous dictum that the
essence of mathematics is its freedom. As he put it in the Grundlagen
[17]:

Because of this extraordinary position which distinguishes
mathematics from all other sciences, and which produces an
explanation for the relatively free and easy way of pursuing
it, it especially deserves the name of free mathematics, a des-
ignation which I, if I had the choice, would prefer to the now
customary “pure” mathematics.11

Mathematics, Cantor believed, was the one science justified in freeing
itself from any metaphysical fetters. Applied mathematics and theo-
retical mechanics, on the contrary, were metaphysical in both their
content and goals.12

10 The author refers, at this point, to Cantor [17], p. 182.
11 The author refers, at this point, to Cantor [17], p. 182.
12 The author refers, at this point, to Cantor [17], p. 183.
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Wigner, while agreeing with Cantor that the essence of mathematics was
its freedom, was less convinced by “the unity of nature”. In his much-quoted
essay on The unreasonable effectiveness of mathematics in the natural sciences
[128], he wrote:

Somebody once said that philosophy is the misuse of a terminology
which was invented just for this purpose.13 In the same vein, I would
say that mathematics is the science of skillful operations with con-
cepts and rules invented just for this purpose. The principal emphasis
is on the invention of concepts. Mathematics would soon run out of
interesting theorems if these had to be formulated in terms of the con-
cepts which already appear in the axioms. Furthermore, whereas it is
unquestionably true that the concepts of elementary mathematics and
of elementary geometry were formulated to describe entities which are
directly suggested by the actual world [our emphasis], the same does
not seem to be true of the more advanced concepts, in particular the
concepts which play such an important role in physics. . .
The physicist is interested in discovering the laws of inanimate na-
ture. . . 14

Having refreshed our minds as to the essence of mathematics and
physics, we should be in a better position to review the role of math-
ematics in physical theories. . .
It is difficult to avoid the impression that a miracle confronts us here. . .
The miracle of the appropriateness of the language of mathematics for
the formulation of the laws of physics is a wonderful gift which we
neither understand nor deserve. . . 15

One may take issue with the phrase that we have italicized. How does one
distinguish between direct and indirect suggestion? Consider, for example,
Euclid’s definition of a point:16 “A point is that which has no part.” Is this
definition suggested directly by the actual world, or is it a profound abstrac-
tion from the latter? How, for that matter, does one distinguish between the

13 The footnote in the original reads as follows: “This statement is quoted here from
W. Dubislav’s Die Philosophie der Mathematik in der Gegenwart [28], p. 1.”

14 It is interesting to compare Wigner’s views with those of Dirac, who began a 1939
address entitled The Relation between Mathematics and Physics [23] as follows:
“The physicist, in his study of natural phenomena, has two methods of making
progress: (1) the method of experiment and observation, and (2) the method
of mathematical reasoning. . . There is no logical reason why the second method
should be possible at all, but one has found in practice that it does work and meets
with reasonable success. This must be ascribed to some mathematical quality in
Nature. . . ”

15 For a penetrating philosophical analysis of the problem, see the article by Steiner
in [97] and his book [103].

16 We have taken the quotation from Martin [72], p. 122, who gives references to his
own sources.
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actual world, and abstractions from it? Rather, how does one tell a statement
about the actual world – which may be called a scientific proposition – from
one about abstractions from it?

One answer to this question has been provided by Popper [84]. According
to him, it is the possibility of empirical refutation17 that demarcates between
scientific and metaphysical propositions. A proposition cannot (or should not)
be called scientific if it is not susceptible to empirical refutation.18 Now the
totality of quantitative empirical data available to mankind at any given
time consists of a finite collection of finite sets of rational numbers. This
fact strongly limits the inferences that can be made from such data; it ex-
cludes all conclusions that are drawn in mathematics by the use of limiting
processes. Popper failed to analyze the impact of this basic limitation upon
his criterion – and he has not been criticized by philosophers on this account.

Popper’s criterion can be rendered into everyday speech as follows: A
proposition can be called a discovery if and only if it admits the possibil-
ity of empirical refutation; otherwise – like theorems of mathematics – it can
at best be called an invention.

Consider now the question: Is the differential calculus a discovery, or an in-
vention [96]? A derivative involves the notion of a limit, which in turn involves
an infinite data-set, which is beyond the reach of experiment or observation.
This would suggest that the differential calculus is not a discovery in the sense
of Popper. But then what about Newton’s second law of motion, which uses
the second derivative? Would any physicist be comfortable with the notion
that it is an invention?

Is the calculus a discovery, or an invention? It is unlikely that any answer,
or analysis, would satisfy everyone. The physicist, however, may be willing to
make do with the answer that an ordered space about which one can make
empirically refutable statements is densely embedded in one which is locally a
differentiable manifold; the last is a statement that is not empirically refutable.

For the working physicist, the notions of point, topology and completeness
come in a package. They may be logically distinct, but this logical separation
is thoroughly blurred by the limitations of quantitative empirical data. One
could assert that Cantor’s great contribution to physics was the notion of
completeness. Indeed, for the experimental physicist Cantor’s nested interval
theorem for complete metric spaces is the operational definition of a geometri-
cal point. A geometrical point cannot be “pinpointed” in the laboratory, but,
at least in classical physics, there is no limit to the “goodness” with which it
can be approximated.

17 The term empirical includes the experimental and the observational; astronomy
has been called an observational, but not an experimental science. One can observe
the paths of the planets, but one cannot perform experiments upon them.

18 The authors are aware that Popper is more popular with scientists than with
philosophers. In the words of a philosopher of science, “He [Popper] got everything
wrong” – rather a strong statement to make about the author of The Open Society
and its Enemies [85]. The authors are scientists, who appreciate The Open Society.
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Uniformities and Uniform Completion

A uniform space is a set X together with a structure called a uniformity
defined on it. This structure can be defined in three different but equivalent
ways, each with its own particular advantages.1 The first two of the following
originate in the seminal work of Weil [109]; the third was defined by Tukey
[108].2

1. In terms of a family of pseudometrics on X. This definition is used by
Gillman and Jerison in their monograph on Rings of Continuous Functions
[43], “as they [pseudometrics] provide us with a large supply of continuous
functions”.

2. As a filter on X × X that satisfies certain conditions, one of them being
that each member of the filter contain the diagonal Δ = {(x, x)|x ∈ X}.
This definition was given in its present form by Bourbaki [12].

3. In terms of certain covers of X called uniform covers, in which X is covered
by “sets of the same size”. This definition was given by Tukey [108], and
is used extensively by Isbell in his monograph [53] on what, according to
its author, “might be labelled fairly accurately [as the] intrinsic geometry
of uniform spaces”.

All three definitions are given below. It should be pointed out that there
are slight differences in terminology in the literature, the most important

1 Willard [130] calls the second and third of these diagonal and covering unifor-
mities, respectively, and we shall follow his terminology. In the same spirit, we
shall call the first pseudometric uniformities. It should be borne in mind that
the different names refer, not to different mathematical objects, but to different
definitions of the same object.

2 Uniformities are treated in many standard textbooks on topology. All three defi-
nitions may be found, either in the text or in the exercises, in the books by Kelley
[57] and Willard [130]. The specialized monograph by Gillman and Jerison uses
only pseudometric uniformities. The elementary textbook by James [55] discusses
only diagonal uniformities.

H.-J. Borchers and R.N. Sen: Mathematical Implications of Einstein–Weyl Causality,
Lect. Notes Phys. 709, 157–167 (2006)
DOI 10.1007/3-540-37681-X A c© Springer-Verlag Berlin Heidelberg 2006



158 A Uniformities and Uniform Completion

being that a few authors (cf. [53]) assume the Hausdorff property to be an
integral part of the definition of a uniformity.

A.1 Equivalent Definitions of Uniformities

A.1.1 Pseudometric Uniformities

We begin by recalling the notion of a pseudometric.

Definition A.1.1

A pseudometric on a set X is a function d : X × X → R that satisfies the
following conditions for all x, y, z ∈ X:

1. d(x, y) ≥ 0;
2. d(x, x) = 0;
3. d(x, y) = d(y, x); and
4. d(x, z) ≤ d(x, y) + d(y, z).

A pseudometric differs from a metric only in that d(x, y) = 0 need not imply
x = y.

Example A.1.2 Let f : X → R be a real-valued function on X. The function

d(x, y) = |f(x) − f(y)|

is a pseudometric on X. Note that f does not have to be continuous.

Notations A.1.3 If A is a nonempty subset of X, the d-diameter of A is
defined to be

d{A} = sup
x,y∈A

d(x, y) .

Definition A.1.4 A pseudometric uniformity on X is defined to be a non-
empty family G of pseudometrics on X satisfying the following conditions:

a) If d1, d2 ∈ G then d1 ∨ d2 ∈ G, where d1 ∨ d2 = sup (d1, d2).

b) If d is a pseudometric and δ > 0 (δ is otherwise arbitrary), and there
exists a d′ ∈ G and δ′ > 0 such that d′(x, y) < δ′ ⇒ d(x, y) < δ, then
d ∈ G.

Condition b) may be expressed as follows: d′{A} < δ′ ⇒ d{A} < δ.
A pseudometric uniformity G is called Hausdorff if for x �= y there exists

a d ∈ G for which d(x, y) �= 0.
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A.1.2 Diagonal Uniformities

In the following, the notations E−1 and F ◦F are to be understood as relations
on X. Recall that if E = {(x, y)} is a relation on X, i.e., a subset of X × X,
then the inverse relation E−1 is defined to be the subset {(y, x)} of X × X.
If U and V are relations on X, then their composition U ◦ V is defined to be
the set of all pairs (x, z) such that, for some y, (x, y) ∈ V and (y, z) ∈ U .

Definition A.1.5 The diagonal of a set X×X is the subset Δ = {(x, x)|x ∈
X}. A diagonal uniformity on a set X is a filter E on X × X consisting of
subsets of X × X called entourages or surroundings such that:

a) If E ∈ E then Δ ⊂ E.

b) If E ∈ E then there exists an entourage F ∈ E such that F ⊂ E−1.

c) If E ∈ E then there exists an entourage F ∈ E such that F ◦ F ⊂ E.

Note that E ∈ E implies that E−1 ∈ E .

A diagonal uniformity E on X is called Hausdorff (or separated, or
separating) iff ⋂

E∈E
E = Δ .

Condition 3) of Definition A.1.5 has been described by Kelley [57] as “a
vestigial form of the triangle inequality”. It imposes more structure than a
topology on X. Given any cover of X, one can always define a topology by
taking finite intersections and arbitrary unions. Take now a family of subsets
of X × X each containing the diagonal. Add all finite intersections to the
family, and define a filter by taking supersets. This filter may fail to satisfy
condition 3) of Definition A.1.5. See [55] for an example.

Examples A.1.6 1. On any set X, the family consisting of all supersets of
the diagonal Δ = X × X defines a uniformity called the discrete unifor-
mity.

2. On any set X, the family consisting of the single set X × X defines a
uniformity called the trivial uniformity.

A.1.3 Covering Uniformities

We begin with a few preliminary definitions:

Definition A.1.7 Let U and U ′ be covers of X. U ′ is said to refine U if every
U ′ in U ′ is contained in some U in U , U ′ ⊂ U for some U ∈ U .
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Definition A.1.8 If U is a cover of X and A ⊂ X, then the star of A with
respect to U , written St (A,U), is the union of all members of U that intersect
A:

St (A,U) =
⋃

{U ∈ U|A ∩ U �= ∅} .

Definition A.1.9 Let U and V be covers of X. One says that U star-refines
V (is a star-refinement of V ), iff, for each U ∈ U , there is some V ∈ V such
that St (U,U) ⊂ V .

Definition A.1.10 A covering uniformity on a set X is a family μ of covers
of X such that

a) If V,W ∈ μ then there exists U ∈ μ that refines both V and W.

b) If U refines V and U ∈ μ, then V ∈ μ.

c) Every element of μ has a star-refinement in μ.

Definition A.1.11 A base for a covering uniformity μ on X is any subcol-
lection μ′ of μ such that

μ = {U|U covers X and U ′ refines U for some U ′ ∈ μ′} .

A covering uniformity μ on X is called Hausdorff if for any two distinct
points x, y ∈ X, there is a cover U ∈ μ such that no element of U contains
both x and y.

A.2 Equivalence Theorems

The results given below establish that covering uniformities are equivalent to
i) pseudometric uniformities, and ii) to diagonal uniformities. The equivalence
of pseudometric and diagonal uniformities follows from these.

Lemma A.2.1 Let μ be a covering uniformity for X. Then there exists a
pseudometric ρ on X such that Uε = {Uρ(x, ε) |x ∈ X} is a uniform cover
(i.e., Uε ∈ μ) for each ε > 0. Here Uρ(x, ε) = {y | y ∈ X, ρ(x, y) > ε}.

The family of pseudometrics {ρα |α ∈ A} that generates a covering uni-
formity μ is called the gage G of the uniformity μ. The gage G of a uniformity
μ has the properties a) and b) of Definition A.1.4. Conversely:
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Theorem A.2.2 Any collection G of pseudometrics on X satisfying the con-
ditions a) and b) of Definition A.1.4 is a gage for some covering uniformity
μ on X.

The correspondence between gages and uniform covers is one-to-one. To
state the result that establishes the correspondence between diagonal and
covering uniformities, we need a definition:

Definition A.2.3 A base B for a diagonal uniformity E on X is a filter base
for X × X that satisfies conditions a) – c) of Definition A.1.5.

Theorem A.2.4 Let μ be a family of covers of X that satisfies the conditions
a)–c) of Definition A.1.10. For U ∈ μ, define

DU =
⋃

{U × U |U ∈ U}

and
B = {DU | U ∈ μ} .

The collection B is a base for a diagonal uniformity E on X. The uniform
covers of X are precisely the elements of μ.

A.3 The Uniform Topology

The three distinct but equivalent definitions of uniformities lead to three dis-
tinct but equivalent ways of defining new concepts, and stating and proving
new results. We shall not give proofs, and shall confine ourself to only one de-
finition each of the concepts that will be introduced below. Unless otherwise
mentioned, our definitions will be in terms of diagonal uniformities, which will
be denoted by E . Proofs may be found in the texts by Kelley [57], Willard
[130] or James [55].

We shall sometimes view subsets of X × X as relations. Accordingly, if
E ⊂ X × X, we shall write:

Notations A.3.1

E[x] = {y|(x, y) ∈ E}.
E[A] =

⋃
x

E[x], x ∈ A ⊂ X.

Definition A.3.2 If (X, E) is a uniform space, the topology T of the unifor-
mity E, or the uniform topology, is the topology in which the family of sets
Tx = {E[x]|E ∈ E} is a neighbourhood base at x ∈ X.

The topology of the discrete uniformity is discrete; that of the trivial unifor-
mity is indiscrete.
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Proposition A.3.3 The topology T of the uniformity E is Hausdorff if and
only if E is Hausdorff.

On a uniformizable space (the definition of uniformizability is given below,
in Definition A.5.1), there may be different uniformities that gives rise to the
same topology. However, this cannot happen in a compact Hausdorff space:

Theorem A.3.4 If X is a compact Hausdorff space, then the neighbourhood
filter of the diagonal ΔX in X×X defines a uniformity on X. The topology of
this uniformity coincides with the original topology, and no other uniformity
on X has this property.

Definition A.3.5 (Relative uniformity) If (X, EX) is a uniform space
and Y a subset of X, then the uniformity defined on Y by the family

EY = {E ∩ Y × Y |E ∈ EX}

is called the relativization of EX to Y , or the relative uniformity for Y . The
pair (Y, EY ) is called a uniform subspace of (X, EX).

Use of the term relativization in the theory of uniformities is consistent
with its usage in general topology.

A.4 Uniform Continuity and Equivalence

Definition A.4.1 Let E and K be diagonal uniformities on X and Y respec-
tively. A function f : X → Y is said to be uniformly continuous iff for each
K ∈ K, there is some E ∈ E such that (x1, x2) ∈ E ⇒ f(x1, x2) ∈ K.

It follows easily that every uniformly continuous function is continuous.
The notion of uniform equivalence is akin to that of topological equivalence

or homeomorphism, but there appears to be no shorter term for it.

Definition A.4.2 The uniform spaces X and Y are said to be uniformly
equivalent if there exists a bijection φ : X → Y such that both φ and φ−1 are
uniformly continuous.

The notion of a Cauchy sequence extends to uniform spaces, and a uni-
formly continuous map sends Cauchy sequences to Cauchy sequences, which
is a result that we shall use several times.

Definition A.4.3 The sequence of points {xn} in a uniform space X is called
a Cauchy sequence if for each entourage E of X there is an integer N such
that (xm, xn) ∈ E whenever m,n ≥ N .

Proposition A.4.4 Let X,Y be uniform spaces and f : X → Y a uniformly
continuous map. If {xn}n∈N is a Cauchy sequence in X, then {f(xn)}n∈N is
a Cauchy sequence in Y .
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A.5 Uniformizability of a Topological Space

We now come to the notion of uniformizability, which is a property of topo-
logical spaces.

Definition A.5.1 A topological space X is said to be uniformizable if there
is a uniformity E on X such that the topology of this uniformity coincides
with the topology of X.

Theorem A.5.2 A topological space is uniformizable if and only if it is com-
pletely regular.3

A.5.1 Metrizability of a Uniform Space

A metric on X defines a uniformity on X via a cover consisting of open balls
of radius ≤ ε. This uniformity is called the metric uniformity on X.

Definition A.5.3 A uniformity E on X is said to be metrizable if there exists
a metric d on X such that the uniformity induced by d coincides with E.

Theorem A.5.4 A uniformity is metrizable if and only if it is Hausdorff and
has a countable base.

An ordered space is always Hausdorff, but does not have to be second
countable.

Remark A.5.5 If a uniformity is metrizable, so is the uniform topology it
generates. In the opposite direction, there is a surprise: metrizability of the
uniform topology does not imply that the uniformity itself is metrizable. See
[130] for an example.

A.6 Uniform Completion

We begin by recalling the definition of a Cauchy filter in a uniform space.

Definition A.6.1 (Cauchy filter) A filter F in the uniform space {X, E}
is called a Cauchy filter if for each entourage E of the uniformity there exists
a member W of F such that W × W ⊂ E.

Remark A.6.2 It is sufficient for the Cauchy condition to be satisfied for all
members of a base for the uniformity.

Next, we recall the following result about sequences in a uniform space:
3 Recall that we use the term completely regular to denote a space in which a closed

set and a point disjoint from it can be separated by an Urysohn function; we do
not require one-point sets to be closed. We call a completely regular space in
which one-point sets are closed a Tychonoff space.
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Proposition A.6.3 Let {xn} be a sequence of points in the uniform space X.
If {xn} converges in the uniform topology then {xn} is a Cauchy sequence.

The analogue of the above for filters is:

Proposition A.6.4 Let F be a filter on the uniform space X. If F converges
in the uniform topology then F is a Cauchy filter.

The key definition is the following:

Definition A.6.5 A uniform space is called complete if and only if every
Cauchy filter in the space converges to a point in the space.

Also:

Definition A.6.6 A uniform space M is called sequentially complete if every
Cauchy sequence of points in M converges.

Theorem A.6.7 A complete uniform space is sequentially complete.

A uniform space that is not complete may be completed (by identifying
Cauchy filters with points). Details may be found in [57], [130] or [55].

Definition A.6.8 (Uniform completion of a uniform space) A uniform
completion of a uniform space (X, E) is a pair (f, (X�, E�)) where (X�, E�)
is a complete uniform space and f is a uniform embedding of X as a dense
subspace of X�.

Propositions A.6.3 and A.6.4 provide the essentials of the connection be-
tween the completion of a uniformity and the completion of a metric space.
Note that there exist uniformities that do not arise from any metric. For
details, see [55].

A.6.1 Complete Uniformizability: Shirota’s Theorem

Finally, we come to another property of topological spaces, called complete
uniformizability:

Definition A.6.9 A topological space X is called completely uniformizable
if there exists a uniformity in which X is complete, and which induces the
topology of X.

Theorem A.6.10 (Shirota’s theorem) A topological space X is comp-
letely uniformizable iff:

a) X is Tychonoff.

b) Every closed discrete subspace of X has nonmeasurable cardinal, and:

c) X is realcompact.4

4 We shall not give either the proper definition of realcompactness, or the motivation
for it, but shall content ourselves with quoting the following result: Theorem: A
topological space is realcompact iff it can be embedded as a closed subspace in a
product of real lines. The interested reader may consult [43].
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The cardinal m of the power of a set S is called nonmeasurable if every
countably additive two-valued measure (taking the values 0 and 1) defined
on all subsets of S and vanishing on singletons vanishes.5 Observe that the
cardinal ℵ0 is nonmeasurable.

Neither the existence nor the nonexistence of measurable cardinal num-
bers is provable in ZFC.6 Moreover, assuming that ZFC is consistent, it is not
possible to prove that “ZFC + there exists a measurable cardinal” is consis-
tent. It follows that in mathematics based on ZFC the cardinality condition
in Shirota’s theorem may be dropped. We refer the reader to [39] for an in-
troduction to “beyond ZFC” and to [27] for more details, without the use of
forcing.

Shirota’s theorem has been called by Isbell [53] “the first deep theorem in
uniform spaces”.

A.6.2 Total Boundedness

There is a useful connection between completeness and compactness in the
class of uniform spaces called totally bounded or precompact :

Definition A.6.11 A covering uniformity μ on X is said to be totally
bounded (or precompact) if μ has a base consisting of finite covers. Equiva-
lently, a diagonal uniformity E on X is totally bounded iff, for each E ∈ E,
there is a finite cover {U1, . . . Un} of X such that Uk × Uk ⊂ E for each k.

If X is equipped with a totally bounded uniformity, it is called a totally
bounded (or precompact) uniform space.

Theorem A.6.12 A uniform space is compact iff it is complete and totally
bounded.

That is, a precompact uniform space is compact iff it is complete.

A.7 Properties of Hausdorff Uniformities

The order uniformity is Hausdorff, and Hausdorff uniformities have many
pleasant properties. We list below those that we shall exploit.

Theorem A.7.1 Every uniform space is uniformly isomorphic to a dense
subspace of a complete uniform space. Each Hausdorff uniform space is uni-
formly isomorphic to a dense subspace of a complete Hausdorff uniform space.
5 The question whether such a measure, which does not vanish identically, exists is

known as Ulam’s problem.
6 The standard version of mathematics is based on the Zermelo-Fraenkel axioms for

set theory (denoted ZF), plus the axiom of choice (denoted C), and is sometimes
called ZFC. See [48] for a brief but lucid account, or [39] for a fuller account.
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For proofs, see [55], [57] or [130].
The completion (X�, E�) is Hausdorff if (X, E) is a Hausdorff uniform

space. For this case, Theorem A.7.1 can be stated as follows:

Theorem A.7.2 The uniform completion of a (Hausdorff ) uniform space is
itself a (Hausdorff ) uniform space.

Furthermore, the uniform completion of a Hausdorff uniform space is essen-
tially unique:

Theorem A.7.3 Let X1, X2 be complete Hausdorff uniform space, and let
A1, A2 be dense subsets of X1, X2 respectively. If A1 and A2 are uniformly
equivalent then so are X1 and X2.

Theorem A.7.4 A compact Hausdorff space admits of a unique uniformiza-
tion.

We conclude this section with the following result (which we have exploited
repeatedly in Chap. 6).

Theorem A.7.5

1) A closed subset of a complete uniform space is complete.

2) A complete subspace of a Hausdorff uniform space is closed.

A.8 Inequivalent Uniformities

A Tychonoff space is uniformizable. A uniformization of a Hausdorff topo-
logical space is Hausdorff, so that a uniformization of a Tychonoff space is
Hausdorff. Therefore any uniformization of a Tychonoff space has an essen-
tially unique (Hausdorff) uniform completion. However, a Tychonoff space can
admit of inequivalent uniformities which have very different completions, as
the following example (rather, class of examples) illustrates.

Let X be a Tychonoff space. Let C(X) denote the space of continuous real-
valued functions on X, and C∗(X) the space of bounded real-valued functions
on X. Any f ∈ C(X) or defines a pseudometric on X. The family of these
pseudometrics defines a (pseudometric) uniformity on X, denoted by C(X).
Similarly, the functions f ∈ C∗(X) define a uniformity on X, which is denoted
by C∗(X). (For details, see [43].) If X is not compact, these two uniformities
are inequivalent.

The Stone-Čech compactification βX of X is carried out using C∗(X).
(See, for example, [130].) If one carries out exactly the same construction, but
using C(X) instead of C∗(X), one obtains a space which is denoted by υX
and is called the Hewitt realcompactification or the Nachbin completion of X.
The following theorem holds:
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Theorem A.8.1 Let X be a completely regular space.

1. The completion of X in the uniformity C(X) is (υX, C(υX)).

2. The completion of X in the uniformity C∗(X) is (βX, C(βX)).

For a proof, see [43]. The reader will also find there (in the exercises) conditions
under which a Tychonoff space has a unique uniformization.

The spaces υX and βX are related as follows:

Proposition A.8.2
X ⊂ υX ⊂ βX .

We have not explained either the origins or the full meaning of the term
realcompactification, as to do so would have taken us too far afield. The inter-
ested reader will find a detailed treatment of the subject in the monograph
[43] by Gillman and Jerison.

This concludes our summary of uniformities and uniform completion.



B

Fibre Bundles and G-Structures

In this appendix, we shall recapitulate a few key definitions and results from
the theory of fibre bundles and G-structures. We shall define G-structures
using the concept of coordinate transformations on the base space with values
in a group, which was made an integral part of his definition of fibre bundles by
Steenrod [102]. Fibre bundles enjoy a crucial property known as the homotopy
lifting property (the covering homotopy theorems; [102], Sect. 11), and in
topological applications it is often this property that is essential. Accordingly,
in the topological literature one often comes across definitions of fibre bundles
that do not refer to coordinate transformations on the base space with values
in a group, but in geometry one has to ask for more.

The material of Sect. B.1 provides the background required for Sect. 8.5.
The material of Sect. B.2 is meant to supplement that of Sect. 2.2.

B.1 Fibre Bundles

The definition that follows is taken from Steenrod (op. cit.). Variants that are
suitable for geometry may be found in [62] or [104].

B.1.1 Coordinate Transformations on the Base Space

When global coordinate systems do not exist, there are no global coordinate
transformations. The following gives a local version.

Let X be a topological space and {Vj}, j ∈ J an open cover of X (J is an
indexing set), and G a topological group. A family of continuous maps {gji}

gji : Vi ∩ Vj → G , (B.1)

is called a system of coordinate transformations on X with values in G if it
satisfies the following conditions:

H.-J. Borchers and R.N. Sen: Mathematical Implications of Einstein–Weyl Causality,
Lect. Notes Phys. 709, 169–173 (2006)
DOI 10.1007/3-540-37681-X B c© Springer-Verlag Berlin Heidelberg 2006
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gij(x)gjk(x) = gik(x) ∀ x ∈ Vi ∩ Vj ∩ Vk ,

[gik(x)]−1 = gki(x) ∀ x ∈ Vi ∩ Vk .
(B.2)

It follows from the above that

gii(x) = e ∀ i ∈ J, x ∈ Vi, (B.3)

where e is the identity of G.

B.1.2 Fibre Bundles

The topological notion of a fibre bundle is a generalization of the notion
of the topological product X × Y of the spaces X and Y . A fibre bundle
B = {B,X, Y, p,G} is a collection as follows: X,Y and B are topological spaces
called respectively the base space, fibre and total space. G is a topological
group called the group of the bundle which acts effectively1 on Y . Finally,
p : B → X is a surjective map called the projection. The space B is locally,
but not necessarily globally, a product (one sometimes says that B is locally
trivial). One may picture B as being glued together from “local products”
Vj × Y , where Vj ⊂ X is an open set. Vj × Y may, in turn be viewed as a
collection of “fibres” {x} × Y , where x ∈ Vj , whence the term fibre bundles.
The glueing-together is done as follows. One demands that there exist an open
cover {Vj}, j ∈ J of X such that, for each j ∈ J , there is a homeomorphism

φj : Vj × Y → p−1(Vj) (B.4)

which preserves fibres, i.e., satisfies

pφj(x, y) = x ∀ x ∈ Vj , y ∈ Y .

Then for each j ∈ J and each x ∈ Vj , the expression

φj,x(y) = φj(x, y)

maps Y onto the fibre p−1(x) over x,

φj,x : Y → p−1(x),

and the composite map
φ−1

j,x ◦ φi,x : Y → Y

is a homeomorphism of Y . This homeomorphism is required to coincide with
the operation of an element g of G on Y . Define now

gji(x) = φ−1
j,x ◦ φi,x(x) . (B.5)

1 That is, g · y = y for all y ∈ Y implies that g = e (the group is assumed to act
from the left).
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The gji so defined are required to form a system of coordinate transformations
on X with values in G.2

In Steenrod’s definition, X,Y,G and the {Vj , gji} are taken as given; the
total space B and the projection p are constructed. The construction, for the
case of interest, is carried out explicitly in Sect. 8.5 and will not be repeated
here. The result is a fibre bundle with a coordinate system; the latter is
eliminated in the standard fashion. For details, see [102].

Let B = {B,X, Y, p,G} and B′ = {B′, X ′, Y, p′, G} be two bundles with
the same fibre and group. A map h : B → B′ is called a bundle map if it
satisfies the following conditions:

1. It preserves fibres, i.e., maps the fibre Yx over x ∈ X homeomorphically
onto a fibre Yx′ , thus inducing a continuous map h̄ : X → X ′ such that

p′ ◦ h = h̄ ◦ p .

2. Let x′ = h̄(x). If x ∈ Vj ∩ h̄−1(V ′k) and hx : Yx → Yx′ is the map induced
by h, then the map

ḡkj(x) = φ′−1
k,x′ ◦ hx ◦ φj,x

of Y into Y coincides with the operation of an element of G.
3. The map

ḡkj : Vj ∩ h̄−1(V ′j ) → G

defined above is continuous.

These maps are sometimes called fibre-preserving maps in the literature.

B.1.3 Reduction of the Group of the Bundle

If the cover {Vj} of X contains a subcover {Vα}α∈A such that the gαβ take
their values in a closed subgroup H of G whenever α, β ∈ A, restriction to
this subcover is said to effect a reduction of the group of the bundle (from G
to H).

All of the above considerations carry over to smooth fibre bundles if topo-
logical spaces are replaced by smooth manifolds, continuous maps by smooth
maps, topological groups by Lie groups and continuous actions by smooth
actions. Fibre bundles in differential geometry are assumed to be smooth.

B.1.4 Tangent Bundles

Let M be a smooth manifold of dimension n and Tx(M) be the tangent space
to it at x ∈ M . Then Tx(M) is isomorphic to Rn. It can be shown that M ,
together with the tangent spaces at all its points, is a fibre bundle with fibre
Y = Rn and group GL(n, R). This bundle is called the tangent bundle and
denoted by T (M). Details may be found in Steenrod’s book [102], or in [62],
[75] or [104].
2 In relativity theory, the symbol gij usually denotes components of the pseudo-

Riemannian metric. This is clearly not the case over here.
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B.2 G-structures on Differentiable Manifolds

Many of the important local geometrical structures that can be defined on a
differentiable manifold3 fall into two classes. They are G-structures, defined by
Chern [19], and connections, first defined under the name of parallel transport
by Levi-Civita [70] and later subsumed under the general notion elaborated by
Ehresmann (see [62] or [104]). We shall recapitulate the notion of G-structures
in the following; we shall not have occasion to use the notion of connections.
We remind the reader that we shall only be considering smooth structures.

It is a fundamental result in the theory of fibre bundles (see, for example,
[102]) that the group of a bundle can always be reduced to a maximal compact
subgroup.

We now make the following definition:

Definition B.2.1 (G-structures:)

A G-structure on a manifold M with group G is a reduction of the group
GL(n, R) of the tangent bundle T (M) to the group G.

The following examples are familiar under other descriptions:

Examples B.2.2

1. Riemannian metric: A Riemannian metric on M is a smooth assignment
of positive definite quadratic forms on tangent spaces Tx(M) at the points x
of M . This is equivalent to reducing the group of the tangent bundle to the
orthogonal group O(n), for the latter is the group of linear transformations
that leave positive definite quadratic forms on Tx(M) invariant. Since O(n)
is the maximal compact subgroup of GL(N, R), this reduction is always
possible; a differentiable manifold always admits a Riemannian metric. A
Riemannian metric on M is an O(n)-structure on M .

2. Pseudo-Riemannian metric: A pseudo-Riemannian metric on the n-
dimensional manifold M is a smooth assignment of indefinite quadratic
forms of signature n−2 at the tangent spaces Tx(M) at points x of M . This
is equivalent to reducing the group of the tangent bundle to the Lorentz
group O(1, n − 1), for the latter is the group of linear transformations
that leave the Minkowski form x2

0 − x2
1 − . . . − x2

n−1 invariant. A pseudo-
Riemannian metric on M is an O(1, n−1)-structure on M ; it is also known
as a Lorentz structure. Among compact two-dimensional manifolds, only
two admit a Lorentz structure: the torus and the Klein bottle. By contrast,
every compact three-manifold admits a Lorentz structure [102].

3. Conformal structure: Denote by (u, v) the (indefinite) Minkowski form
on Rn. A Lorentz transformation Λ leaves this form invariant: (Λu,Λv) =
(u, v). One may consider, instead of the Λ’s, transformations T ∈ GL(n, R)

3 We assume that a manifold is Hausdorff, second countable and paracompact, by
definition. See footnote 8 on p. 150.
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that multiply the Minkowski form by a nonzero scalar: (Tu, Tv) = λ(T )(u, v)
for all u, v ∈ Rn, where λ(T ) depends only on T . The conformal group is
the group G of these transformations. A conformal structure on an n-
dimensional pseudo-Riemannian manifold M is a reduction of the group
of T (M) to G.

Remark B.2.3 The definition of conformal structure given above is the one
generally found in the physics literature; see, for example, [46], pp. 15–19
or [54], pp. 642–645. Conformal transformations thus defined preserve both
“spherical” and “hyperbolic” angles. In the mathematical literature, one usu-
ally considers only Riemannian metrics and spherical angles. See, for example,
[104]. The definition used in physics includes the one used in mathematics as
a special case. The concept of conformal transformations used earlier in Sect.
2.2.3 was that of the physicist.



C

The Axioms and Special Assumptions

For ease of reference, the axioms, the nontriviality assumptions (3.1.10), the
definition of a D-set and the special assumptions of Chaps. 5 and 6 are col-
lected together in the following. The verbal explanations that follow the formal
definitions a)–f) of (4.2.1) have been omitted. The entries below are numbered
as they are in the text. Recall that βC is the subset of the cone C which, in
a D-set, is seen to coincide with the boundary of C after the topology is
introduced (Sects. 3.2 and 3.2.1).

Axiom 3.1.2 (The order axiom, p. 17)

a) If x, y ∈ l and x �= y, then either x <l y or y <l x; if x <l y and y <l,
then x = y.

b) If x, z ∈ l, x �= z, x <l z, then ∃ y ∈ l such that x <l y <l z, x �= y, y �= z.

c) If y ∈ l, then ∃ x, z ∈ l such that x <l y <l z, x �= y, y �= z.

d) If x, y ∈ l1 ∩ l2, then x <l1 y ⇔ x <l2 y.

�
Assumptions 3.1.10 (Nontriviality assumptions, p. 21)

a) M is nonempty, and does not consist of a single point.

b) M does not consist of a single light ray.

c) M is l-connected.
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Axiom 3.1.12 (The identification axiom, p. 21)

If l and l′ are distinct light rays and a ∈ S ≡ l ∩ l′, then there exist p, q ∈ l
such that p <ll a <ll q, and l(p, q) ∩ S = {a}. Similarly for l′.

�
Axiom 3.2.8 (The cone axiom, p. 25)

C+
x ∩ C−x = {x} ∀ x ∈ M .

�
Definition 4.2.1 (p. 32)

A subset U of M will be called a D-set (from the German Durchschnittseigen-
schaft) iff it fulfills the following conditions:

a) x, y ∈ U ⇒ I[x, y] ⊂ U .

b) For every x ∈ U and every l 
 x, there exist points p, q ∈ l ∩ U such that
p <ll x <ll q.

c) If y ∈ U, r ∈ τC−y ∩ U and lr 
 r, then

l+r ∩ {βC−y \{y}} ∩ U �= ∅ ,

and the same for reversed order.

d) If x ∈ U and l ∩ βC+
x ∩ U contains two distinct points a, b, then

x ∈ la,b ∩ C+
x ∩ U ⊂ βC+

x ∩ U ,

and the same for reversed order. (Remark: This part is called the convexity
axiom.)

e) If a, b ∈ U and λ(a, b), then the ray la,b is unique.

f) If x ∈ U , then there pass at least two distinct light rays through x.

�

Axiom 4.5.1 (The local structure axiom, p. 45)

The ordered space M satisfies the following axiom: For each x ∈ M , there
exists a D-set Ux such that x ∈ Ux ⊂ M .

�

Assumption 5.3.3 (Overlapping cover assumption, p. 61)

The ordered space M will be assumed to be such that every light ray has an
overlapping cover.

This assumption is not needed in order complete spaces.
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Assumption 6.4.1 (Local precompactness assumption, p. 72)

From now on (unless the contrary is stated explicitly) all ordered spaces M
will be assumed to be locally precompact. That is, the uniform subspace (D, ED)
will, by assumption, be totally bounded for every D-set D ⊂ M . Here ED is
the order uniformity on D.

Assumption 6.5.1 (First countability assumption, p. 76)

From now on, all ordered spaces M will be assumed to satisfy the first axiom
of countability, unless the contrary is stated explicitly.

Assumption 6.6.1 (Dimensionality assumption, p. 80)

There are infinitely many light rays through any point of M .

This assumption is not needed in locally Minkowski spaces.
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